
e C++14 Standard Library
Jonathan Wakely
Red Hat

e C++14 Standard Library

1 of 41 ACCU 2014

20. General Utilities (+10)

21. Strings (+1)

22. Localization (+1)

23. Containers (+1)

24. Iterators (+1)

25. Algorithms (+1 / -1)

26. Numerics (+1)

27. Input/output (+1/ -1)

30. read support (+1)

C++11 FDIS was N3290, the C++14 dra is N3936

Overview

e C++14 Standard Library

2 of 41 ACCU 2014

exchange<>()

get<>() tuple elements by type

integer_sequence<>

allocator<>::propagate_on_container_move_assignment

make_unique<>()

greater<>, less<> etc.

Improved integral_constant<>

SFINAE-friendly result_of<>

Transformation Traits aliases

Suffixes for duration<> literals

General Utilities

e C++14 Standard Library

3 of 41 ACCU 2014

General Utilities: exchange
e non-atomic equivalent of atomic_exchange

Assigns a new value to an object and returns the old value

Example:

void Thing::stuff()
{
 if (!std::exchange(m_initialized, true))
 do_initialization();
 // do other stuff
}

e C++14 Standard Library

4 of 41 ACCU 2014

General Utilities: exchange
e non-atomic equivalent of atomic_exchange

Assigns a new value to an object and returns the old value

Another example:

void unique_ptr<T>::reset(pointer new_ptr)
{
 if (auto old_ptr = std::exchange(m_ptr, new_ptr))
 m_deleter(old_ptr);
}

e C++14 Standard Library

5 of 41 ACCU 2014

General Utilities: exchange

template <class T, class U = T>
 T exchange(T& obj, U&& new_val);

 Effects: Equivalent to:

 T old_val = std::move(obj);
 obj = std::forward<U>(new_val);
 return old_val;

e C++14 Standard Library

6 of 41 ACCU 2014

General Utilities: get
C++11 provides the get<N>() function for retrieving a tuple element by its index in the tuple

C++14 adds new overloads to retrieve an element by type:

 tuple<int, double, string> t{ 1, 2.0, "three" };

 auto& d = std::get<double>(t);

 assert(&d == &std::get<1>(t));

e tuple must have exactly one element of that type

Overloaded for pair too

e C++14 Standard Library

7 of 41 ACCU 2014

Utilities: integer_sequence

template<class T, T...> struct integer_sequence;

template<class T, T N> using make_integer_sequence
 = integer_sequence<T, 0, 1, 2, 3, ... N-1>;

template<size_t... I> using index_sequence
 = integer_sequence<size_t, I...>;

template<size_t N> using make_index_sequence
 = make_integer_sequence<size_t, N>;

template<class... T> using index_sequence_for
 = make_index_sequence<sizeof...(T)>;

e C++14 Standard Library

8 of 41 ACCU 2014

Utilities: integer_sequence
Used inside variadic templates to expand elements of a tuple (or tuple-like object) into a list of arguments

 template<class F, class Tuple>
 decltype(auto)
 apply(F f, Tuple&& t)
 {
 return f(std::get< ??? >(t));
 }

We want a pack expansion like std::get<N>(t)... where N is a parameter pack of indices

e C++14 Standard Library

9 of 41 ACCU 2014

Utilities: integer_sequence

template<class F, class Tuple>
decltype(auto)
apply(F&& f, Tuple&& t)
{
 using TupleSize = tuple_size<decay_t<Tuple>>;
 using Indices = make_index_sequence<TupleSize::value>;

 return apply_impl(f, t, Indices{});
}

template<class F, class Tuple, size_t... I>
decltype(auto)
apply_impl(F&& f, Tuple&& t, index_sequence<I...>)
{
 return f(std::get<I>(t)...);
}

e C++14 Standard Library

10 of 41 ACCU 2014

Utilities: allocator::pocma

template<class T>
class allocator
{
public:
 using propagate_on_container_move_assignment
 = true_type;
 // ...
};

e C++14 Standard Library

11 of 41 ACCU 2014

Utilities: make_unique
In C++11 we have shared_ptr and make_shared:

 func(make_shared<X>(aargo, bargo, cargo),
 make_shared<Y>(dargo, eargo, fargo));

But there is no equivalent for unique_ptr

 func(unique_ptr<X>{new X{aargo, bargo, cargo}},
 unique_ptr<Y>{new Y{dargo, eargo, fargo}});

e unique_ptr version is not exception-safe

e C++14 Standard Library

12 of 41 ACCU 2014

Utilities: make_unique
For creating a single object:

unique_ptr<X> p = make_unique<X>(argo, bargo, cargo);

For creating arrays of objects:

unique_ptr<Y[]> p = make_unique<Y[]>(n); // new Y[n]()

e C++14 Standard Library

13 of 41 ACCU 2014

Utilities: diamond operators
C++ has always provided functors for the built-in operators

less<> is widely-used as the default comparison function for sorted containers

Other operators such as plus, not_equal_to, bit_xor also available

ey are all class templates taking a single argument that must be provided:

std::sort(begin, end, std::greater<ValueType>{});

e C++14 Standard Library

14 of 41 ACCU 2014

Utilities: diamond operators

C++14 gives them a default template argument, so that greater<> means greater<void>, and defines specializations for void which accept any
argument types, deduced as needed:

template<> class greater<void> {
 template<class T, class U> decltype(auto)
 operator()(T&& t, U&& u) const
 { return std::forward<T>(t) > std::forward<U>(u); }

 using is_transparent = unspecified;
};

std::sort(begin, end, std::greater<>{});

e C++14 Standard Library

15 of 41 ACCU 2014

Utilities: integral_constant
template <class T, T v>
struct integral_constant {

 static constexpr T value= v;

 using value_type = T;

 using type = integral_constant<T,v>;

 constexpr operator value_type() { return value; }

 constexpr value_type operator()() { return value; }

};

e C++14 Standard Library

16 of 41 ACCU 2014

Utilities: result_of ♥ SFINAE

In C++11 you got a compile-time error if you tried to instantiate result_of with invalid arguments, so decltype was oen preferred

C++14 says that result_of<F(A...)>::type is only defined when the type F is callable with arguments of type A...

template<typename F, typename... Args>
typename std::result_of<F(Args...)>::type
call(F f, Args&&... args)
{ return f(std::forward<Args>(args)...); }

e C++14 Standard Library

17 of 41 ACCU 2014

Utilities: Traits Aliases
e C++11 type transformation traits are very useful, but the syntax is verbose and ugly:

typename remove_const<T>::type

C++14 adds alias templates for all the traits with a nested type member:

template<typename T>
 using remove_const_t = typename remove_const<T>::type;

So now you can just use remove_const_t<T>

e C++14 Standard Library

18 of 41 ACCU 2014

Utilities: Duration literals
C++11 added User-Defined Literals to the language, which are now used in three places in the standard library

e first set of suffixes are defined in the <chrono> header to simplify creating durations, so that:

 cv.wait_for(chrono::milliseconds(150));

becomes:

 cv.wait_for(150ms);

e C++14 Standard Library

19 of 41 ACCU 2014

Utilities: Duration literals
e available suffixes are:

 h // chrono::hours
 min // chrono::minutes
 s // chrono::seconds
 ms // chrono::milliseconds
 us // chrono::microseconds
 ns // chrono::nanoseconds

e C++14 Standard Library

20 of 41 ACCU 2014

Utilities: Duration literals

constexpr std::chrono::microseconds
operator ""_μs (unsigned long long usec)
{ return std::chrono::microseconds{ usec }; }

constexpr std::chrono::duration<long double, std::micro>
operator ""_μs(long double usec)
{
 using D
 = std::chrono::duration<long double, std::micro>;
 return D{ usec };
}

using namespace std::literals;
assert(5_μs == 5us);
assert(3.14_μs == 3.14us);

e C++14 Standard Library

21 of 41 ACCU 2014

Utilities: Aside

I wish new extensions had been added to a new header rather than just adding more and more to <utility>

We could have another header containing the 2nd set of general utilities

 #include <utilitu>

is is just a silly pun on "utility two" that's also a palindrome!

e C++14 Standard Library

22 of 41 ACCU 2014

Utilities: Further Aside
I also wish we had a header of utilities for working with files

 #include <futility>

e C++14 Standard Library

23 of 41 ACCU 2014

Strings: string literals

ere are literal suffixes for creating the standard basic_string specializations:

using namespace std::literals;
auto s = "narrow"s; // std::string
auto s16 = "utf-16"s; // std::u16string;
auto s32 = "utf-32"s; // std::u32string;
auto ws = L"wide"s; // std::wstring;

e s suffix for strings is not ambiguous with the suffix for creating chrono::seconds values

e C++14 Standard Library

24 of 41 ACCU 2014

Localization: isblank
C99 added the isblank character classification function, for testing whether a character is one of a locale-specific whitespace characters (in the "C"
locale that is ' ' or '\t'). C++14 adds:

int isblank(int);

template<typename charT>
 bool blank<charT>(charT, const locale&);

and a new bitmask element:

ctype_base::blank

e C++14 Standard Library

25 of 41 ACCU 2014

Containers: lookup
e standard associative containers now support "heteregeneous lookup"

map<string, int> m{ {"a", 1}, {"b", 2} };
auto it = m.find("b");

Which is a fancy way of saying you can search using a key of a different type to the keys stored in the container

e find call above calls
 map::find(const key_type&)
which requires constructing a temporary string

e C++14 Standard Library

26 of 41 ACCU 2014

Containers: lookup

C++14 adds new templated overloads of find (and count, lower_bound, upper_bound and equal_range) which are function templates:

template<typename K>
 iterator find(const K& x);
template<typename K>
 const_iterator find(const K& x) const;

But these new overloads are only present when the container's comparison function has a nested is_transparent type

e C++14 Standard Library

27 of 41 ACCU 2014

Containers: lookup
e new lookup functions are disabled by default to avoid causing performance regressions in existing code, so you have to opt-in by explicitly using a
custom comparison functor that tells the container to enable the new functions

e "diamond operators" such as less<> all define the is_transparent typedef, so they can be used to enable the new lookup functions

map<string, int, less<>> m{ {"a", 1}, {"b", 2} };
auto it = m.find("b");

template<typename Key, typename Val>
 using Map = std::map<Key, Value, std::less<>>;

e C++14 Standard Library

28 of 41 ACCU 2014

Iterators: Forward Iterators
C++14 gives a slightly stronger new guarantee for forward iterators:

e domain of == for forward iterators is that of iterators over the same underlying sequence. However, value-initialized iterators may
be compared and shall compare equal to other value-initialized iterators of the same type. [Note: value initialized iterators
behave as if they refer past the end of the same empty sequence — end note]

e C++14 Standard Library

29 of 41 ACCU 2014

Algorithms: moar robust!

In previous versions of C++ the non-modifying sequence algorithms equal, mismatch and is_permutation take a pair of iterators denoting the
first range, and a second iterator denoting the start of the second range

It is the caller's responsibility to ensure that the second range is at least as long as the first

If the second range is shorter, the library will walk off the end of that second range

If the second range is longer, the end of the range won't be checked

e C++14 Standard Library

30 of 41 ACCU 2014

Algorithms: moar robust!

C++14 adds new overloads of equal, mismatch and is_permutation which take two iterators for the second range

ese overloads are more explicit about the length of the two ranges that the user wants to compare, and will stop checking at the end of the shorter
range

For non-random access iterators it is more efficient for the algorithm to do the range checking on-the-fly, rather than for the user to have to find the
length of the shorter range

e C++14 Standard Library

31 of 41 ACCU 2014

Algorithms: less rand!

C and C++ provide the rand() function to produce pseudo-random numbers, but the implementation is completely unspecified and so the quality of
the pseudo-random numbers it produces varies between platforms and is unreliable.

A common use of rand() is to simply apply the modulo operator to obtain a number in a desired range: rand() % count — even if the C library's
rand() implementation is excellent and produces good random numbers this does not produce a uniform distribution!

e C++14 Standard Library

32 of 41 ACCU 2014

Algorithms: less rand!

C++11 provided several new random number facilities in <random>, with clearly defined, portable semantics and tools for correctly obtaining
uniform distributions for a given range, and these should be preferred to rand()

C++14 strengthens a note discouraging the use of rand():

[Note: e random number generation (26.5) facilities in this standard are oen preferable to rand, because randâ€™s underlying algorithm is unspeciï¬ed. Use of
rand therefore continues to be nonportable, with unpredictable and o-questionable quality and performance. â€” end note]

e C++14 Standard Library

33 of 41 ACCU 2014

Algorithms: less rand!

C++14 also deprecates the random_shuffle algorithms, because the three-argument overload uses an unspecified PRNG, and at least one
implementation simply uses rand() % count (oops!)

e C++11 shuffle algorithm, which uses the new <random> facilities, should be used instead.

e C++14 Standard Library

34 of 41 ACCU 2014

Numerics: complex literals
ere are literal suffixes for creating complex numbers:

using namespace std::literals;
auto a = 1i; // complex<double>(0, 1.0)
auto b = 3.14if; // complex<float>(0, 3.14f)
auto c = -99il; // complex<long double>(0, -99.L)

e C++14 Standard Library

35 of 41 ACCU 2014

Input/output: quoted
A common C++ gotcha is trying to read a string and geing incomplete input, because operator>> is a formaed input function, which means it
stops reading on whitespace.

string orig = "Hello, world!";
stringstream buf;
buf << orig;
string s;
buf >> s;
assert(s == orig); // (â•¯Â°â–¡Â°ï¼‰â•¯ï¸µ â”»â”â”»)

e C++14 Standard Library

36 of 41 ACCU 2014

Input/output: quoted
C++14 adds a new IO manipulator for writing out, and reading back in, delimited strings, using the quoted manipulator.

string orig = "Hello, world!";
stringstream buf;
buf << std::quoted(orig);
string s;
buf >> std::quoted(s);
assert(s == orig); // \o/ yay!

e C++14 Standard Library

37 of 41 ACCU 2014

Input/output: gets
C99 deprecated the gets() function and C11 removed it entirely, because it is unsafe and error-prone, but because the C++ standard library is still
based on the C90 library, we still defined gets() by reference.

Defining an unsafe function in C++ that even C doesn't define was embarrassing, so it has been removed from C++14 - yay!

e C++14 Standard Library

38 of 41 ACCU 2014

reads: shared_timed_mutex
Early versions of the C++0x thread library proposals included a shared_mutex type (and associated shared_lock) which didn't make it into the
C++11 standard.

at type has now been added to C++14, but renamed to shared_timed_mutex for consistency with the other Mutex types.

It is a read/write mutex, allowing multiple threads to take a "shared" lock which can then be upgraded to an exclusive lock when a single thread wants
to own the mutex.

e C++14 Standard Library

39 of 41 ACCU 2014

Technical Specifications
Filesystem
Library Fundamentals (optional, any, polymorphic allocators, string_view, shared_ptr for arrays, variable templates for type traits, boyer-moore
search algorithms, sample algorithm and more!)
Array extensions (dynarray)
Parallelism
Concurrency

e C++14 Standard Library

40 of 41 ACCU 2014

ese slides are available at hps://gitorious.org/wakelyaccu/accu2014

You can download and view the HTML version of these slides with commands like:

git clone https://git.gitorious.org/wakelyaccu/accu2014.git
firefox accu2014/cxx14lib.html

e C++14 Standard Library

41 of 41 ACCU 2014

