Software Quality Dashboard for Agile Teams

Alexander Bogush Apr 11th 2014

Agenda

- Code quality metrics and their importance
- Lean thinking
- Quality Dashboard building blocks
- Green screens
- Software quality attributes
 - Internal, external, trends, ranges & tools
- Visual code maps
- Summary

.. is the degree to which a product fulfills requirements

• Higher grade doesn't mean higher quality

www.laresidencemykonos.com, lvivalive.com/old-city-hostel

Quality Metrics

Quality metrics distinguish good engineering product sample from faulty

- tightly coupled with numerical measurements
- acceptable ranges, % and distribution of defects explicitly defined

Normal Distribution Curve, Fit to a Histogram

www.siliconbeachtraining.co.uk/blog/reduce-queue-times-six-sigma, ecouterre.com, dmaictools.com

Quality Metrics – Why We Care?

Extreme values are an indicator of (hidden) defects, not only "pure" technical debt

- Refactor bad code before it deteriorates further is a sure way to avoid numerous bugs and wasted effort
- Good design is cost effective way to build-in and assure quality

To make our jobs more enjoyable, predictable, and sustainable

- We spend at least half a day at work
- Spend more time being creative
 - i.e. design new component vs.
 - clean rubbish created by ourselves and others

Code Quality Metrics – Keep Design Simple

Make and keep good design to sustain and deliver quality software by good

- Abstraction
- Cohesion and Coupling
- Information Hiding
- Structural Complexity
- ...etc

"Make things as simple as possible, but no simpler" - Albert Einstein, interview at NBC

thedemocraticdaily.com, thepridepost.com

Cyclomatic Complexity

Control Flow graph

- # of independent paths through the code
- each new decision (*if*, elseif, switch, for, do while, catch, etc) adds one point

http://www.codeproject.com/Articles/37111/White-Box-Testing-Technique

Cyclomatic Complexity vs Defect Rate

Mark Schroeder, "A Practical Guide to Object-Oriented Metrics", IT Pro, Nov/Dec 1999.

Structural Complexity vs Defect Rate

Robert Grady, Practical Software Metrics for Project Management and Process Improvement, Prentice Hall PTR, 1992.

Defect probability vs Fan Out and SLOC

Fan Out	FO^2/10	5	10	15	20	25	30	35	40	45	50	75	100
1	0.1	0.10%	0.10%	0.20%	0.20%	0.30%	0.30%	0.40%	0.40%	0.50%	0.50%	0.80%	1.00%
2	0.4	0.20%	0.40%	0.60%	0.80%	1.00%	1.20%	1.40%	1.60%	1.80%	2.00%	3.00%	4.00%
3	0.9	0.50%	0.90%	1.40%	1.80%	2.30%	2.70%	3.20%	3.60%	4.10%	4.50%	6.80%	9.00%
4	1.6	0.80%	1.60%	2.40%	3.20%	4.00%	4.80%	5.60%	6.40%	7.20%	8.00%	12.00%	16.00%
5	2.5	1.30%	2.50%	3.80%	5.00%	6.30%	7.50%	8.80%	10.00%	<mark>11.30%</mark>	12.50%	<mark>18.80%</mark>	25.00%
6	3.6	1.80%	3.60%	5.40%	7.20%	9.00%	10.80%	12.60%	14.40%	<mark>16.20%</mark>	<mark>18.00%</mark>	27.00%	36.00%
7	4.9	2.50%	4.90%	7.40%	9.80%	12.30%	14.70%	17.20%	<mark>19.60%</mark>	22.10%	24.50%	36.80%	49.00%
8	6.4	3.20%	6.40%	9.60%	12.80%	<mark>16.00%</mark>	19.20%	22.40%	25.60%	28.80%	32.00%	48.00%	64.00%
9	8.1	4.10%	8.10%	12.20%	16.20%	20.30%	24.30%	28.40%	32.40%	36.50%	40.50%	60.80%	81.00%
10	10	5.00%	10.00%	<mark>15.00%</mark>	20.00%	25.00%	30.00%	35.00%	40.00%	45.00%	50.00%	75.00%	100.00%
11	12.1	6.10%	12.10%	<mark>18.20%</mark>	24.20%	30.30%	36.30%	42.40%	48.40%	54.50%	60.50%	90.80%	121.00%
12	14.4	7.20%	<mark>14.40%</mark>	21.60%	28.80%	36.00%	43.20%	50.40%	57.60%	64.80%	72.00%	108.00%	144.00%
13	16.9	8.50%	<mark>16.90%</mark>	25.40%	33.80%	42.30%	50.70%	59.20%	67.60%	76.10%	84.50%	126.80%	169.00%
14	19.6	9.80%	<mark>19.60%</mark>	29.40%	39.20%	49.00%	58.80%	68.60%	78.40%	88.20%	98.00%	147.00%	196.00%
15	22.5	11.30%	22.50%	33.80%	45.00%	56.30%	67.50%	78.80%	90.00%	101.30%	112.50%	168.80%	225.00%
20	40	20.00%	40.00%	60.00%	80.00%	100.00%	120.00%	140.00%	160.00%	180.00%	200.00%	300.00%	400.00%
25	62.5	31.30%	62.50%	93.80%	125.00%	156.30%	187.50%	218.80%	250.00%	281.30%	312.50%	468.80%	625.00%

Robert Grady, Practical Software Metrics for Project Management and Process Improvement, Prentice Hall PTR, 1992.

Lean Principles

Long-term strategy Flow (eliminate waste) Pull Less variability Stop & Fix Standardize Simple visual management

Good technology Leaders-teachers Develop people Help partners Go See Consensus **Continuous improvement**

Lean Spring Clean Summary

1-2 hours each, 40% of engineers

Typical projects:

- Personal efficiency (email, laptop, space, etc)
- Reducing technical debt
- Team efficiency (Clean-up bug tracking, TFS, etc)

Quality Dashboard Building Blocks

Piotr Szewello, Schlumberger internal report, 2013

Quality Trends Watcher

Server Side Solution that

- communicates with CC .NET build servers
- every day scans build logs to extract quality data
- persists this data in a repository
- provides WCF services for Visualization Clients
 - Silverlight client for Trends Visualization
 - HTML client for "Red & Green" Screens

Piotr Szewello, Schlumberger internal report, 2013

Green Screens

Software Quality Attributes

External ("in the eyes of customer" and others)

- Performance
- Correctness
- Scalability
- Usability
- Efficiency
- Reliability
- Integrity
- Robustness
- Adaptability

Internal (team's ability to deliver/ rate of returns /integrity)

- Maintainability
- Flexibility
- Portability
- Reusability
- Readability
- Testability
- Understandability

Internal Quality Trends & Tools

Basic yet efficient set of metrics

- Test Coverage (NCover/NUnit, VSTest/NUnit/CppUnit)
 - TDD, ability to release frequently with confidence, etc.
- Cyclomatic Complexity (FxCop, SourceMonitor)
 - Directly related to number of defects if exceeds good range
- Coupling (FxCop)
 - Global complexity, can be extended with OO metrics
- % of Duplicated code (Atomiq)
- Number of Statements (FxCop, SourceMonitor)
 - Secondary to CC
- Maintainability (FxCop)
 - Turned out to be not very useful

Metrics Objectives Tailored per Project: Avg & Trends

	Coverage	Delta	Maintain.	Delta	C.Compl.	Delta	Coupling	Delta	Stat.	% Dupl
Pr. A	10.1%	1.1%	81.8%	0.12%	2.352	-0.01	3.26	-0.01	6.22	17.3%
Pr. B	12.3%	3.2%	82.1%	0.45%	2.439	0	3.25	-0.06	5.73	6.4%
Pr. C	60.5%	12.5%	84.9%	-0.01%	1.826	0	2.9	0	4.21	19.2%
Pr. D	21.6%	9.7%	85.6%	0.34%	1.513	-0.05	2.46	0.07	4.34	2.2%
Pr. E	7.4%	3.3%	79.6%	-0.36%	2.965	0.03	3.86	0.03	7.07	4.5%
Pr. F	6.7%	-14.6%	84.7%	-0.94%	2.571	0.42	3.28	0.23	4.57	21.7%
Pr. G	33.5%	0.0%	N/A	N/A	1.875	0.03	N/A	N/A	11.83	41.1%
Pr. H	60.8%	1.3%	85.3%	-0.34%	2.089	0.08	2.43	0.08	5.19	2.3%
Pr. I	N/A	N/A	84.4%	0.18%	2.111	0.04	3.14	-0.06	7.20	N/A

- Red boxes are ready candidates for improvement
- Make it a build failure if they deteriorate further

Internal Quality Metrics per Project: 15 worst extremes & their trends

	Maintainability	Delta	C.Complexity	Delta	Coupling	Delta
Product A	9.73	0.13	81.87	0.07	54.47	0.07
Product B	16.20	0.73	63.8	1.33	44.2	-0.67
Product C	22.00	-0.07	25.27	0	35.47	0
Product D	21.87	0.73	10.8	-3.07	25.4	-0.8
Product E	17.13	-0.01	58.2	0.4	43.47	0.2
Product F	21.47	-1.00	86.33	6.6	31.33	-0.47
Product G	N/A	N/A	119.6	2.73	N/A	N/A
Product H	22.60	-0.07	47.67	1.4	31.87	-0.33
Product I	23.00	-0.13	21.47	0.67	32	0.13

All red boxes are candidates for monthly/quarterly/annual targets for improvements

Creeping Normality - Frog Missing Temperature Sensor

It is surprisingly easy for code to become so complex that it can no longer support any significant enhancement

http://allaboutfrogs.org/stories/boiled.html, http://www.offroaders.com devexpress.com

Boundary Thresholds/Healthy Ranges

- Test Coverage [>80 green, 50-80 warning zone, <50 red]</p>
- Cyclomatic Complexity [10 15]
- Coupling [10, 80]
- % of Duplication [2,5]
- Number of Statements [300, 600]
- Maintainability [82, 20]
- Methods per Class [10,22]
- Calls per Method [5, 15]
- Maximum block depth [3, 6]
- Depth of Inheritance [3, 6]

Software Quality Attributes

External ("in the eyes of customer" and others)

- Performance
- Correctness
- Scalability
- Usability
- Efficiency
- Reliability
- Integrity
- Robustness
- Adaptability

Internal (team's ability to deliver/ rate of returns /integrity)

- Maintainability
- Flexibility
- Portability
- Reusability
- Readability
- Testability
- Understandability

External Quality Attributes Report

Quality Attributes Summary

- Specific attributes and target values identified through ATAM process
- Derived from nightly build test suite
- Aggregated to give min/max/average values and compare with targets/goals

Categories	Range				
Project Performance Parameters (In Seconds)	Max	Average	Min		
ModelCreationTime	2	1	0		
UpscalingTime	54	28	3		
OptimizationSessionTime	168	83	42		
ScenarioTime	168	83	42		
TrialTime	53	8	0		
SimulationTime	27	4	0		
Project Scalability Parameters	Max	Average	Min		
Cells	55419	28909	2400		
CellsUsed	28557	15098	1639		
Slabs	19	10	2		
	10	2	0		
	10	2	0		
	3	0	0		
	3	0	0		
	7	1	0		
	7	1	0		
	2	1	1		
	14	4	1		
Project Correctness Parameters	Max	Average	Min		
	9	4	1		
	6	2	1		
	3	1	0		
	438053695,10184717	357523638	278906419 295025		

Workflows Status – Client's Value Flow

Comparison nith Baseline			
PROGRESS ION	N/A	N/A	PASSIDIC BDFC:0 FDFC:0 BFDFC:0
EQUAL	PASS DFC: 36 BDFC: 36 FDFC: 0 BFDFC: 0	N/A	N/A
EQUAL	N/A	PASS DFC: 140 BDFC: 86 F DFC: 0 BFDFC: 0	N/A
EQUAL	PASS DFC: 33 BDFC: 33 FDFC: 0 BFDFC: 0	PASS DFC: 85 BDFC:4 FDFC:0 BFDFC:0	N/A
PROGRESS ION	PASS DEC: 6 BLF C: 0 FLF C: 0 BFLF C: 0	PASS DFC:31 BDFC:0 FDFC:0 BFDFC:0	N/A
PROGRESS ION	PASS DRC: 11 BDF C: 0 FDFC: 0 BFDFC: 0	N/A	PASS DFC 36 BDFC: 25 FDFC: BFDFC: 0
EQUAL	PASS DFC:2 BDFC:2 FDFC:0 BFDFC:0	N/A	N/A
EQUAL	PASS DFC: 55 BDFC: 95 FDFC: 0 BFDFC: 0	N/A	PASS DFC 87 BDFC: 53 FDFC: BFDFC: 0
PROGRESS ION	N/A	N/A	N/A
EQUAL	PASS DFC: 469 BDFC: 500 FDFC: 0 BFDFC: 0	PASS DFC: 165 BDFC: 161 FDFC: 0 BFDFC: 0	PASS DFC 437 BDFC 508 FDFC 0 BFDFC:
EQUAL	N/A	N/A	PASS DFC 11 BDFC: 11 FDFC: BFDFC: 0
EQUAL	PASS DFC: 37 BDFC: 37 FDFC: 0 BFDFC: 0	N/A	N/A
EQUAL	N/A	N/A	PASS DFC 10 BDFC: 13 FDFC: BFDFC: 0
EQUAL	PASS DFC:4 BDFC:4 FDFC:0 BFDFC:0	PASS DFC: 16 BDFC: 16 FDFC: 0 BFDFC: 0	MINOR DFC:39 BDFC:39 FDFC:2 BEDFC:2

	Test Fixture	Status	Progress
Þ	A_Models_Test		(2/6)
Þ	A_Models_Test_		(0/4)
Þ	A_Models_Test_		(1/7)
Þ	A_Models_Test_ForBeta		(0/4)
Þ	BasicWorkflowTestForDataset_		(0/2)
Þ	BasicWorkflowTestForDataset_		(0/2)
Þ	BasicWorkflowTestForDataset_		(0/2)
Þ	BasicWorkflowTestForDataset,		(0/8)
Þ	BasicWorkflowTestForDataset,		(2/3)
Þ	BasicWorkflowTestForDataset_		(0/2)
Þ	BasicWorkflowTestForDataset		(0/2)
Þ	BasicWorkflowTestForDataset		(0/2)
Þ	BasicWorkflowTestForDataset,		(0/2)
Þ	BasicWorkflowTestForDataset		(1/4)
Þ	BasicWorkflowTestForDataset		(0/2)
Þ	BasicWorkflowTestForDataset_		(1/2)
Þ	BasicWorkflowTestForDataset,		(0/2)
Þ	BasicWorkflowTestForDataset		(1/2)
Þ	BasicWorkflowTestForDatase*		(0/2)
Þ	BasicWorkflowTestForDatase		(1/3)
Þ	BasicWorkflowTestForDataset		(0/2)
Þ	Deviated_test_Long		(0/2)
Þ	Deviated_test_simple		(0/3)
Þ	Test		(0/1)
Þ	•		(3/12)
			(1/2)
P			(1/2)
P			(9/3)
Ь			(0/2)

Code "Soundness" Index

JIT(JavaScript InfoVis ToolKit) API http://philogb.github.io/jit/

Code "Soundness" Index – zoom out

Summary and Acknowledgements

- All the trademarks mentioned and pictures used are of their respective owners
- Big thanks to engineers and interns from Abingdon Answer
 Products who participated in the development of this system
- Special thanks to Steve Tockey for inspiring me to look at complexity and Nigel Lester for reviewing and promoting it to ACCU
- Contact information

Alexander Bogush <u>abogush@slb.com</u> Senior software engineer at Schlumberger Abingdon, UK Thank you

Any questions?