
C++11 User-defined Literals

Michael Rüegg on behalf of Prof. Peter Sommerlad

ACCU 2013 / Bristol, UK / April 10, 2013

Who are we?

Figure : University of Applied Sciences Rapperswil, Switzerland

Built-in literals

Basic type literals

◮ C++ has literals for its basic data types:

◮ integer literals
◮ floating-point literals
◮ character literals
◮ string literals
◮ boolean literals

◮ Determine value and basic type:

decltype(42) => int

decltype(’i’) => char

decltype("accu") => const char[4+1]

decltype(nullptr) => nullptr_t

Prefixes and suffixes

decltype(42UL) => unsigned long

decltype(L’i’) => wchar_t

decltype(U"UTF-32") => const char32_t[]

◮ They allow us to pick a particular function overload:

void foo(int);

void foo(unsigned);

foo(42); // => foo(int)

foo(42U); // => foo(unsigned)

◮ And they also influence interpretation:

auto i = 42; // decimal value 42

auto j = 0x42; // decimal value 66

auto s = "(C:\\foo.txt)"; // results in (C:\foo.txt)
auto t = R"(C:\foo.txt)"; // results in C:\foo.txt

Motivation

Why do we need UDLs?

◮ What is the meaning of this?

const int distanceToTarget = 42;

◮ Constants without dimension are confusing!

◮ e.g., miles vs. kilometers
◮ speed in mph, km/h, mach or c units

◮ Wouldnt it be nice to write out values and units together:

assert(1_kg == 2.2_lb);

◮ String literals in C++ aren’t std::strings:

auto s = "hello"; // => const char[]

Why do we need UDLs? . . . continued

◮ To spell out complex numbers:

auto val = 3.14_i; // complex<long double>(0, 3.14)

◮ Or even to have binary literals:

int answer = 101010_B; // answer = 42

◮ And to prevent silly bugs:

Probability p1 = 0.5_P // OK

Probability p2 = 1.2_P; // NOK: 0 <= P <= 1

Probability p3 = -0.5_P; // NOK: 0 <= P <= 1

css::Margin::Size top1 = 42_pt; // OK

css::Margin::Size top2 = 42; // NOK

User-defined literals 101

Basic form

namespace distance_in_meters {
constexpr double operator"" _m(long double x) {
return x;

}
constexpr double operator"" _m(unsigned long long x) {
return x;

}
}

◮ Overload a special non-member operator function type

operator"" suffix(arg)

◮ Blank following "" and prefix are required

◮ It is only possible to define suffix operators (no prefixes!)

Best practices

◮ If possible, define UDL operator constexpr (literals are often
used to initialize compile-time constants)

◮ Suffixes will be short and might easily clash => Put those
suffix operator functions in separate namespaces, e.g.
namespace suffix { }

◮ To use it: using namespace suffix;

◮ Fully qualified suffix qualifiers are not possible (e.g.,
distance in meters:: m)

◮ No ADL possible because UDLs only work with arguments of
built-in types

Extended example
namespace distance_in_meters { // norm things to meters

constexpr long double operator"" _feet(long double d) {
return d * 0.3048;

}
constexpr long double operator"" _feet(

unsigned long long d) {
return d * 1.0_feet;

}
constexpr long double operator"" _yard(long double d) {
return d * 3_feet;

}} // and so on...

void testYardsAndFeet() {
using namespace distance_in_meters;

ASSERT_EQUAL_DELTA(0.9144_m, 1_yard, 0.00001);

ASSERT_EQUAL_DELTA(0.9144_m, 1e0_yard, 0.00001);

ASSERT_EQUAL(1_yard, 3_feet);

}

How does it work?

◮ What happens if a C++11 compiler encounters 0.9144 m?

1. Recoginition of the floating point literal
2. Lookup of user-defined literal operators
3. Match suffix if possible
4. Interpret 0.9144 to the longest floating point type

◮ Computation of 0.9144 to long double is called cooking

String literal operator

Define real string literals

namespace mystring {
std::string operator"" _s(char const *s,

std::size_t len) {
return std::string{s, len};

}
}

◮ Example allows to use auto with string literals and get a
std::string variable:

using namespace mystring;

auto s = "hello"_s;

s += " world\n";
std::cout << s;

Raw literal operators

Motivation

◮ There are cases when we are forced to analyze literals
character by character:

◮ Interpretation of literals with validity checks
◮ Prevent loss of number precision while type coercion

◮ Syntax to get an “uncooked” string:

namespace mystring {
std::string operator"" _s(char const*s) { //no size_t

return std::string{s};
}}

◮ Raw UDL operators work on numbers and string literals

◮ Avoid them if possible, because they cannot be evaluated at
compile-time in general

Example parsing binary literals

unsigned operator"" _b(const char* str) {
unsigned ans = 0;

for (size_t i = 0; str[i] != ’\0’; ++i) {
char digit = str[i];

if (digit != ’1’ && digit != ’0’)

throw std::runtime_error("only 1s and 0s allowed");

ans = ans * 2 + (digit - ’0’);

}
return ans;

}
// Credit: Andrzej Krzemieński

◮ Cannot be used to define compile-time constants:

constexpr unsigned i = 110_b; // does not compile

◮ => Variadic templates to the rescue!

Literal operators with variadic templates (VT)

VT 101

◮ Example Boost Tuple library:

struct null_type {};
template<

class T0=null_type, class T1=null_type,

class T2=null_type, class T3=null_type,

class T4=null_type, class T5=null_type,

class T6=null_type, class T7=null_type,

class T8=null_type, class T9=null_type >

class tuple { /* ... */ };

◮ With variadic templates:

template <typename... Elements> // parameter pack

class tuple;

typedef tuple <int, int> coordinate;

VT 101 continued

template <typename... Args> // parameter pack

struct ArgCounter;

template <> // basic case

struct ArgCounter <> {
static const int result = 0;

};

template <typename T, typename... Args> // recursive case

struct ArgCounter <T, Args...> {
// Args... => pack expansion

static const int result =

1 + ArgCounter <Args...>::result;

};
// ArgCounter <int, float, double, char>::result == 4

// Credit: Douglas Gregor et al., "Variadic Templates"

static assert 101

◮ Syntax: static assert(b, msg)?

◮ It is a compile-time assert

◮ Allows for nicer compile errors and for checking your codes
assumptions about its environment

◮ Message is not optional and must be a string literal!
(already an issue for the next C++ std)

◮ Useful for compile-time checks, such as:

static_assert(sizeof(int) == 8, "int is not 64 bit");

VT applied

template <unsigned VAL> // basic case

constexpr unsigned build_bin_literal() { return VAL; }

template <unsigned VAL, char DIGIT, char... REST>

constexpr unsigned build_bin_literal() { // recursion

static_assert(is_binary(DIGIT), "only 0s and 1s");

return build_bin_literal<(2*VAL+DIGIT-’0’), REST...>();

}
template <char... STR>

constexpr unsigned operator"" _b() { // literal operator

static_assert(sizeof...(STR) <= NumberOfBits<unsigned>()

, "too long");

return build_bin_literal<0, STR...>();

} // Credit: Andrzej Krzemieński

◮ Now, the compiler yields an error for faulty binary literals:

unsigned i = 102_b; // Does not compile => Hurray!

Wrap-up

Trade-offs

◮ Usage of TMP for implementing UDLs can increase

compile-times significantly

◮ TMP with UDLs needs unit tests too! (tests that are
evaluated at compile-time)

◮ Some consider UDLs an unnecessary complication of the
language. Alternatives are:

◮ Usage of <chrono> makes code also very readable:

using namespace std::chrono;

auto duration = hours{7} + minutes{30};

◮ Boost.Units library with SI units and a very readable physics
notation:

using namespace boost::units;

using namespace boost::units::si;

quantity<nanosecond> t = 1.0 * seconds; // 1e9 ns

quantity<length> L = 2.0 * meters;

Benefits and Outlook

◮ User-defined literals can help

◮ to get dimensions of constants right
◮ to make code more readable
◮ as a short-hand for type conversions
◮ implement compile-time constants of literal types
◮ but also to obfuscate program code :-) if applied mercilessly

◮ Future standard will provide suffixes for std::string,
std::complex, std::chrono::duration

◮ For more information consult N3531

Questions?

Figure : http://ifs.hsr.ch

◮ Credits:

◮ Slides from Prof. Peter Sommerlad
◮ Code examples from Andrzej Krzemieńskis C++ Blog

Contact Info: Prof. Peter Sommerlad

phone: +41 55 222 4984

email: ifs@hsr.ch

Linticator

Linticator gives you immediate feedback on programming style and common

programmer mistakes by integrating Gimpel Software’s popular PC-lint and

FlexeLint static analysis tools into Eclipse CDT.

PC-lint and FlexeLint are powerful tools, but they are not very well integrated into a

modern developer's workflow. Linticator brings the power of Lint to the Eclipse C/C++

Development Tools by fully integrating them into the IDE. With Linticator, you get

continuous feedback on the code you are working on, allowing you to write better code.

• Automatic Lint Configuration

Lint's configuration, like include paths and symbols, is automatically updated from your

Eclipse CDT settings, freeing you from keeping them in sync manually.

• Suppress Messages Easily

False positives or unwanted Lint messages can be suppressed directly from Eclipse,

without having to learn Lint's inhibition syntax–either locally, per file or per symbol.

• Interactive “Linting” and Information Display

Lint is run after each build or on demand, and its findings are integrated into the editor

by annotating the source view with interactive markers, by populating Eclipse’s problem

view with Lint’s issues and by linking these issues with our Lint Documentation View.

• Quick-Fix Coding Problems

Linticator provides automatic fixes for a growing number of Lint messages, e.g, making

a reference-parameter const can be done with two keystrokes or a mouse-click.

Register at http://linticator.com if you want to try it for 30 days or order via email. Linticator

is available for Eclipse CDT 3.4 (Ganymede) up to 4.2 (Juno). It is compatible with

Freescale CodeWarrior and other Embedded C/C++ IDEs based on Eclipse CDT.

More information:

http://linticator.com

Pricing for Linticator is CHF 500.- per user

(non-floating license). A maintenance contract

that is required for updates costs 20% of

license fee per year. The compulsory first

maintenance fee includes 6 month of free

updates.

Orders, enquiries for multiple, corporate

or site licenses are welcome at ifs@hsr.ch.

Linticator requires a corresponding PC-Lint

(Windows) or FlexeLint license per user.

IFS Institute for Software

IFS is an institute of HSR Rapperswil,

member of FHO University of Applied

Sciences Eastern Switzerland.

In January 2007 IFS became an associate

member of the Eclipse Foundation.

The institute manages research and

technology transfer projects of four

professors and hosts a dozen assistants and

employees. Contact us if you look for Code

Reviews, UI, Design and Architecture

Assessments.

http://ifs.hsr.ch

IFS INSTITUTE FOR SOFTWARE! HSR Hochschule für Technik, Oberseestrasse 10, CH - 8640 Rapperswil! http://ifs.hsr.ch

Free Trial

mailto:ifs@hsr.ch?subject=Linticator%20Information%20Flyer
mailto:ifs@hsr.ch?subject=Linticator%20Information%20Flyer
http://gimpel.com
http://gimpel.com
http://linticator.com/account/register
http://linticator.com/account/register
http://linticator.com/wiki/linticator/PricingAndPurchasing
http://linticator.com/wiki/linticator/PricingAndPurchasing
http://linticator.com
http://linticator.com
mailto:ifs@hsr.ch
mailto:ifs@hsr.ch
http://gimpel.com/
http://gimpel.com/
http://gimpel.com/
http://gimpel.com/
http://ifs.hsr.ch/
http://ifs.hsr.ch/
http://ifs.hsr.ch/
http://ifs.hsr.ch/

Contact Info: Prof. Peter Sommerlad

phone: +41 55 222 4984

email: ifs@hsr.ch

Includator
#include Structure Analysis and Optimization for C++ for Eclipse CDT

The Includator plug-in analyzes the dependencies of C++ source file structures generated by #include

directives, suggests how the #include structure of a C++ project can be optimized and performs this

optimization on behalf of the developer. The aim of these optimizations is to improve code readability and

quality, reduce coupling and thus reduce duration of builds and development time of C++ software.

Includator Features

• Find unused includes

Scans a single source file or a whole project for superfluous #include directives and proposes them to

be removed. This also covers the removal of #include directives providing declarations that are

(transitively) reachable through others.

• Directly include referenced files

Ignores transitively included declarations and proposes to #include used declarations directly, if they

are not already included. This provides an “include-what-you-use” code structure.

• Organize includes

Similar to Eclipse Java Development Tool's Organize imports feature for Java. Adds missing #include

directives and removes superfluous ones.

• Find unused files

Locates single or even entangled header files that are never included in the project’s source files.

• Replace includes with forward declarations (EXPERIMENTAL)

Locates #include directives for definitions that can be omitted, when replacing them with

corresponding forward declarations instead. This one is useful for minimizing #includes and reducing

dependencies required in header files.

• Static code coverage (EXPERIMENTAL)

Marks C++ source code as either used, implicitly used or unused by transitively following C++

elements’ definitions and usages. This helps to trim declarations and definitions not used from your

source code. In contrast to dynamic code coverage, such as provided by our CUTE plug-in (http://

cute-test.com) it allows to determine required and useless C++ declarations and definitions instead of

executed or not-executed statements.

User Feedback and Participation

Includator is free to try and test. Register at http://includator.com for a 30-day trial license.

More information:

http://includator.com

Includator is CHF 830.- per

user (non-floating license). A

maintenance contract is

required for updates at 20%

of the license fee per year.

The compulsory first

maintenance fee includes 6

month of free updates.

Orders, enquiries for

multiple, corporate or site

licenses are welcome at

ifs@hsr.ch.

Enquiries for corporate or

site licenses are welcome

at ifs@hsr.ch. Significant

volume discounts apply.

IFS INSTITUTE FOR SOFTWARE! HSR Hochschule für Technik, Oberseestrasse 10, CH - 8640 Rapperswil! http://ifs.hsr.ch

#

Get Swiss Quality

Free Trial

mailto:ifs@hsr.ch?subject=Includator%20Information%20Flyer
mailto:ifs@hsr.ch?subject=Includator%20Information%20Flyer
http://cute-test.com
http://cute-test.com
http://cute-test.com
http://cute-test.com
http://includator.com/account/register
http://includator.com/account/register
http://includator.com
http://includator.com
mailto:ifs@hsr.ch
mailto:ifs@hsr.ch
mailto:ifs@hsr.ch
mailto:ifs@hsr.ch
http://ifs.hsr.ch
http://ifs.hsr.ch

Contact Info: Prof. Peter Sommerlad

phone: +41 55 222 4984

email: ifs@hsr.ch

Green Bar for C++ with CUTE

Eclipse plug-in for C++ unit testing with CUTE

Automated unit testing improves program code quality, even under inevitable change and

refactoring. As a side effect, unit tested code has a better structure. Java developers are

used to this because of JUnit and its tight integration into IDEs like Eclipse. We provide the

modern C++ Unit Testing Framework CUTE (C++ Unit Testing Easier) and a

corresponding Eclipse plug-in. The free CUTE plug-in features:

• wizard creating test projects (including required framework sources)

• test function generator with automatic registration

• detection of unregistered tests with quick-fix for registration

• test navigator with green/red bar (see screen shots to the right)

• diff-viewer for failing tests (see screen shot down to the right)

• code coverage view with gcov (see screen shot below)

Support for Test-driven Development (TDD) and automatic Code Generation

The CUTE plug-in incorporates support for Test-Driven Development (TDD) in C++ and

preview of Refactoring features developed by IFS and its students.

• create unknown function, member function, variable, or type from its use in a test case

as a quick-fix (see screen shots below)

• move function or type from test implementation to new header file, after completion

TDD cycle.

• toggle function definitions between header file and implementation file, for easier change

of function signature, including member functions (part of CDT itself)

• extract template parameter for dependency injection, aka instrumenting code under test

with a test stub through a template argument (instead of Java-like super-class

extraction)

• check out Mockator flyer page for further code refactoring and generation features.

More information:

http://cute-test.com

IFS Institute for Software

IFS is an Institute of HSR Rapperswil,

member of FHO University of Applied

Sciences Eastern Switzerland.

In January 2007 IFS became an

associate member of the Eclipse

Foundation.

The institute manages research and

technology transfer projects of four

professors and hosts a dozen assistants

and employees. Contact us if you look

for Code Reviews, UI, Design and

Architecture Assessments.

http://ifs.hsr.ch

Eclipse update site for installing the

free CUTE plug-in:

http://cute-test.com/updatesite

IFS INSTITUTE FOR SOFTWARE HSR Hochschule für Technik, Oberseestrasse 10, CH - 8640 Rapperswil! http://ifs.hsr.ch

Get Swiss Quality

Free

mailto:ifs@hsr.ch?subject=
mailto:ifs@hsr.ch?subject=
http://cute-test.com
http://cute-test.com
http://ifs.hsr.ch
http://ifs.hsr.ch
http://www.cute-test.com/wiki/cute/CUTE_Installation_and_System_Requirements
http://www.cute-test.com/wiki/cute/CUTE_Installation_and_System_Requirements
http://ifs.hsr.ch
http://ifs.hsr.ch

Contact Info: Prof. Peter Sommerlad

phone: +41 55 222 4984

email: ifs@hsr.ch

Mockator - Eclipse CDT Plug-in for

C++ Seams and Mock Objects

Refactoring Towards Seams

Breaking dependencies is an important task in refactoring legacy code and putting this

code under tests. Michael Feathers' seam concept helps in this task because it enables to

inject dependencies from outside to make code testable. But it is hard and cumbersome

to apply seams without automated refactorings and tool chain configuration assistance.

Mockator provides support for seams and creates the boilerplate code and necessary

infrastructure for the following four seam types:

• Object seam: Based on inheritance to inject a subclass with an alternative

implementation. Mockator helps in extracting an interface class and in creating the

missing test double class including all used virtual member functions.

• Compile seam: Inject dependencies at compile-time through template parameters.

Apply the “Extract Template Parameter” refactoring and Mockator creates the missing

test double template argument class including all used member functions.

• Preprocessor seam: With the help of the C++ preprocessor, Mockator redefines

function names to use an alternative implementation without changing original code.

• Link seam: Mockator supports three kinds of link seams that also allow replacing

dependencies without changing existing code:

• Shadow functions through linking order (override functions in libraries with new

definitions in object files)

• Wrap functions with GNU's linker option -wrap (GNU Linux only)

• Run-time function interception with the preload functionality of the dynamic linker for

shared libraries (GNU Linux and MacOS X only)

Creating Test Doubles Refactorings

Mockator offers a header-only mock object library and an Eclipse CDT plug-in to create

test doubles for existing code in a simple yet powerful way. It leverages new C++11

language facilities while still being compatible with C++03. Features include:

• Mock classes and free functions with sophisticated IDE support

• Easy conversion from fake to mock objects that collect call traces

• Convenient specification of expected calls with C++11 initializer lists or with Boost

assign for C++03. Support for regular expressions to match calls.

Integrates easily with CUTE!

More information:

http://Mockator.com

IFS Institute for Software

IFS is an Institute of HSR Rapperswil,

member of FHO University of Applied

Sciences Eastern Switzerland.

In January 2007 IFS became an

associate member of the Eclipse

Foundation.

The institute manages research and

technology transfer projects of four

professors and hosts a dozen assistants

and employees. Contact us if you look

for Code Reviews, UI, Design and

Architecture Assessments.

http://ifs.hsr.ch

Also check out IFS’ other plug-ins

http://cute-test.com

http://sconsolidator.com

http://linticator.com

http://includator.com

Eclipse update site for installing

Mockator for free:

http://mockator.com/update/indigo

http://mockator.com/update/juno

IFS INSTITUTE FOR SOFTWARE HSR Hochschule für Technik, Oberseestrasse 10, CH - 8640 Rapperswil! http://ifs.hsr.ch

Get Swiss Quality

Free

mailto:ifs@hsr.ch?subject=Mockator%20Information%20Flyer
mailto:ifs@hsr.ch?subject=Mockator%20Information%20Flyer
http://mockator.com
http://mockator.com
http://ifs.hsr.ch
http://ifs.hsr.ch
http://cute-test.com/
http://cute-test.com/
http://sconsolidator.com/
http://sconsolidator.com/
http://linticator.com/
http://linticator.com/
http://includator.com/
http://includator.com/
http://ifs.hsr.ch
http://ifs.hsr.ch

Contact Info: Prof. Peter Sommerlad

phone: +41 55 222 4984

email: ifs@hsr.ch

SConsolidator

Eclipse CDT plug-in for SCons

SCons (http://www.SCons.org/) is an open source software build tool which tries to fix the

numerous weaknesses of make and its derivatives. For example, the missing automatic

dependency extraction, make’s complex syntax to describe build properties and cross-

platform issues when using shell commands and scripts. SCons is a self-contained tool

which is independent of existing platform utilities. Because it is based on Python a SCons

user has the full power of a programming language to deal with all build related issues.

However, maintaining a SCons-based C/C++ project with Eclipse CDT meant, that all the

intelligence SCons puts into your project dependencies had to be re-entered into Eclipse

CDT’s project settings, so that CDT’s indexer and parser would know your code’s compile

settings and enable many of CDT’s features. In addition, SCons’ intelligence comes at the

price of relatively long build startup times, when SCons (re-) analyzes the project

dependencies which can become annoying when you just fix a simple syntax error.

SConsolidator addresses these issues and provides tool integration for SCons in Eclipse

for a convenient C/C++ development experience. The free plug-in features:

• conversion of existing CDT managed build projects to SCons projects

• import of existing SCons projects into Eclipse with wizard support

• SCons projects can be managed either through CDT or SCons

• interactive mode to quickly build single source files speeding up round trip times

• a special view for a convenient build target management of all workspace projects

• graph visualization of build dependencies with numerous layout algorithms and search

and filter functionality that enables debugging SCons scripts.

• quick navigation from build errors to source code locations

More information:

http://SConsolidator.com

Install the free SConsolidator plug-in

from the following Eclipse update site:

http://SConsolidator.com/update

Also check out IFS’ other plug-ins at:

http://cute-test.com

http://mockator.com

http://linticator.com

http://includator.com

SConsolidator has been successfully

used to import the following SCons-

based projects into Eclipse CDT:

• MongoDB

• Blender

• FreeNOS

• Doom 3

• COAST (http://coast-project.org)

IFS INSTITUTE FOR SOFTWARE HSR Hochschule für Technik, Oberseestrasse 10, CH - 8640 Rapperswil! http://ifs.hsr.ch

!

!

!

Free

mailto:ifs@hsr.ch?subject=SConsolidator%20Information%20Flyer
mailto:ifs@hsr.ch?subject=SConsolidator%20Information%20Flyer
http://www.scons.org/
http://www.scons.org/
http://sconsolidator.com
http://sconsolidator.com
http://cute-test.com/
http://cute-test.com/
http://mockator.com
http://mockator.com
http://linticator.com/
http://linticator.com/
http://includator.com/
http://includator.com/
http://coast-project.org
http://coast-project.org
http://ifs.hsr.ch
http://ifs.hsr.ch

	Built-in literals
	Motivation
	User-defined literals 101
	String literal operator
	Raw literal operators
	Literal operators with variadic templates (VT)
	Wrap-up

