
Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

WG21 SG5 C++ Standard TM Sub-Group
Michael Wong

michaelw@ca.ibm.com
International Standard Trouble Maker, Chief Cat Herder

OpenMP CEO
Canada and IBM C++ Standard HoD

Vice chair of Standards Council of Canada Programming Languages
Chair of WG21 SG5 Transactional Memory
Director and Vice President of ISOCPP.org

Transactional Language
Constructs for C++, and C,
and Fortran (maybe)

vs.

mailto:michaelw@ca.ibm.com�

2 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Acknowledgement and Disclaimer
Numerous people internal and external to
the original C++ TM Drafting Group, WG21
SG5 TM group, in industry and academia,
have made contributions, influenced ideas,
written part of this presentations, and
offered feedbacks to form part of this talk.
 I even lifted this acknowledgement and
disclaimer from some of them.
But I claim all credit for errors, and stupid
mistakes. These are mine, all mine!
Any opinions expressed in this presentation
are my opinions and do not necessarily
reflect the opinions of IBM.

3 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Agenda
 STM, HTM, HybridTM
 Birth of a specification
 Design Goals
 Motivation for SG5 in C++ Standard

– Use cases
– Usability
– Performance

 Language Constructs
– Transactions, atomic and relaxed
– Race-free semantics
– Unsafe statements
– Attributes
– Transaction expressions and try blocks
– Cancel
– Exception handling

 SG5 Progress

4 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group 4

Where were you in 1993?
 John Major was Prime Minister of Great Britain
 Brian Mulroney, Kim Campbell, Jean Chrétien were Prime

Ministers of Canada
 Bill Clinton was the President Of U.S.
 EU was formally established by the Treaty of Maastricht, Helmut

Kohl and Francois Mitterand
 Intel Pentium chip was the hot chip
 World Wide Web Mosaic browser was the hottest software

around
 Maurice Herlihy and Elliot Moss wrote

– Transactional Memory: Architectural support for lock free
data structures

– And then got < 10 citations/yr UNTIL 2005: not impressive
– 2005: Multicore is coming: there is no more free-lunch!
– Now you get 80000 hits on google, 2.7 mil on Bing

http://en.wikipedia.org/wiki/Jean_Chr%C3%A9tien�

5 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group 5

Where is transactions in the grand scheme of
Concurrency

Asynchronus Agents Concurrent collections Mutable shared state

summary tasks that run independently
and communicate via
messages

operations on groups of things,
exploit parallelism in data and
algorithm structures

avoid races and synchronizing
objects in shared memory

examples GUI,background printing,
disk/net access

trees, quicksorts, compilation locked data(99%), lock-free
libraries (wizards), atomics
(experts)

key metrics responsiveness throughput, many core
scalability

race free, lock free

requirement isolation, messages low overhead composability

today's abstractions thread,messages

thread pools, openmp locks, lock hierarchies

future abstractions futures, active objects chores, parallel STL,
PLINQ

transactional memory,
declarative support for
locks

6 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group 6

Transactional Memory
 Transactions appear to execute atomically
 A transactional memory implementation may allow

transactions to run concurrently but the results must be
equivalent to some sequential execution
 Just a form of optimistic speculation

atomic {
 a = 2;
 b = a + 1;
 c = b + 1;
}

Example
atomic {
 r1 = a;
 r2 = b;
 r3 = c;
}

Initially, a == 1, b == 2, c == 3

T
1

T2

T1 then T2 r1==2, r2==3, r3==4

T2 then T1 r1==1, r2==2, r3==3

a = 2;
b = 3;

c = 4;

r1 = 1

r2 = 3;
r3 = 3

Incorrect r1==1, r2==3, r3==3

T
1

T2

7 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group 7

Lock elision
synchronized {
 node.next = succ;
 node. prev = pred;
 node. pred = node;
 node.next = node;
}

8 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group 8

Why TM?
A transaction is an atomic sequence of
steps
 Intended to replace locks and conditions
A better way to build lock-free data
structures
–CAS, LL/SC only works on a memory location, or

at best a contiguous memory atomically
–But there is no way to atomically alter a set of

non-contiguous memory locations

9 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group 9

What is Transactional Memory (Again) ?

ACI(D) properties of a transaction make it
easier to ensure that shared memory
programs are correct.
–Atomic: each transaction either commits (it
takes effect) or aborts (its effects are
discarded).

–Consistent (or serializable): they appear to
take effect in a one-at-a-time order.

–Isolated from other operations: the effects
are not seen until the transaction has
committed.

–(Durable: their effects are persistent.)

10 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Reasons for “I Hate TM”
 STM could be inefficient (most serious)

– Improving rapidly, FUD, we were asked to address this

 TM will Never catch on, just use functional program
– New programming style vs legacy

 Shared Mem is doomed, TM is evil because it
makes Shared mem easier to use
What concurrency software crisis? Nothing wrong

with what we do today.
 Its too early
 TM still does not make your application parallel

11 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group 11

Mission creep and Hype Cycle

Now it is viewed as panacea for how
hard it is to program multicore
Can it help power consumptions?
Use in embedded devices

12 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group 12

Language support
 Programming Clojure
 Scala
 Haskell
 Perl
 Python
 Caml
 Java
 C/C++

13 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Agenda
 STM, HTM, HybridTM
 Birth of a specification
 Design Goals
 Motivation for SG5 in C++ Standard

– Use cases
– Usability
– Performance

 Language Constructs
– Transactions, atomic and relaxed
– Race-free semantics
– Unsafe statements
– Attributes
– Transaction expressions and try blocks
– Cancel
– Exception handling

 SG5 Progress

14 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group 14

Why do we need a TM
language?
TM requires language support
Hardware here and now
Multiple projects extend C++ with TM constructs
Adoption requires common TM language extensions
Draft specification of transactional language

constructs for C++
– 2008: Discussions by Intel, Sun, IBM started in July
– 2009: Version 1.0 released in August
– 2011: Version 1.1 fixes problems in 1.0, exceptions
– 2012: Brought proposal to C++Std SG1; became SG5
– 2013: close to wording for a C++ Technical Specification

Today’s talk: part motivation and part tutorial
If time permits: part future specification

15 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

What is hard about adding
TM to C++
Conflict with C++ 0x memory model and
atomics
Support member initializer syntax
Support C++ expressions
Work with legacy code
Structured block nesting
Multiple entry and exit from transactions
Polymorphism
Exceptions

16 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Agenda
 STM, HTM, HybridTM
 Birth of a specification
 Design Goals
 Motivation for SG5 in C++ Standard

– Use cases
– Usability
– Performance

 Language Constructs
– Transactions, atomic and relaxed
– Race-free semantics
– Unsafe statements
– Attributes
– Transaction expressions and try blocks
– Cancel
– Exception handling

 SG5 Progress

17 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group 17

Design goals
Build on the C++11 specification

– Follow established patterns and rules
– “Catch fire” semantics for racy programs

Enable easy adoption
– Minimize number of new keywords
– Do not break existing non-transactional code

Restrict constructs to enable static error detection
– Ease of debugging is more important than flexibility

When in doubt, leave choice to the programmer
– Abort or irrevocable actions?
– Commit-on-exception or rollback-on-exception?

18 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Agenda
 STM, HTM, HybridTM
 Birth of a specification
 Design Goals
 Motivation for SG5 in C++ Standard

– Use cases
– Usability
– Performance

 Language Constructs
– Transactions, atomic and relaxed
– Race-free semantics
– Unsafe statements
– Attributes
– Transaction expressions and try blocks
– Cancel
– Exception handling

 SG5 Progress

19 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Overview

Use cases: where is TM most useful?

Usability: is TM easier than locks?

Performance: is TM fast enough?

20 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Use Cases

21 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Locks are Impractical for
Generic Programming=callback

Thread 1:
m1.lock();
m2.lock();
…

Thread 2:
m2.lock();
m1.lock();
…

+ =
deadlock

What about Thread
1 +

A thread running f():
template <class T>
void f(T &x, T y) {
 unique_lock<mutex> _(m2);
 x = y;
}

Easy. Order Locks.
Now let’s get slightly more real:

What locks does x = y acquire?

?

22 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

What locks does x = y
acquire?
Depends on the type T of x and y.

– The author of f() shouldn’t need to know.
– That would violate modularity.

–But lets say it’s shared_ptr<TT>.
– Depends on locks acquired by TT’s destructor.
– Which probably depends on its member destructors.
– Which I definitely shouldn’t need to know.
– But which might include a shared_ptr<TTT>.

– Which acquires locks depending on TTT’s destructor.
– Whose internals I definitely have no business knowing.
– …

 And this was for an unrealistically simple f()!
We have no realistic rules for avoiding
deadlock!
– In practice: Test & fix?

template <class T>
void f(T &x, T y) {
 unique_lock<mutex> _(m2);
 x = y;
}

23 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Transactions Naturally Fit
Generic Programming Model

Composable, no ordering constraints

f() implementation:
template <class T>
void f(T &x, T y) {
 transaction {
 x = y;
 }
}

Class implementation:
class ImpT
{
 ImpT& operator=(ImpT T&
rhs)
 {
 transaction {
 // handle assignment
 }
 }
};

Impossible to deadlock

24 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

The Problem
Popular belief: enforced locking ordering
can avoid deadlock.

We show this is essentially impossible with
C++ template programming.

Template programming is pervasive in C++.
Thus, template programming needs TM.

25 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Don’t We Know This
Already?
Perhaps, but impact has been widely
underestimated.
–Templates are everywhere in C++.

Move TM debate away from performance;
focus on convincingly correct code.
Relevant because of C++11 and SG5.
Generic Programming Needs Transactional
Memory by Gottschlich & Boehm, Transact
2013

26 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Conclusion
Given C++11, generic programming needs
TM more than ever.

To avoid deadlocks in all generic code, even
those with irrevocable operations, we need
(something like) relaxed transactions.

27 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

TM Patterns and Use Cases
Top four uses cases:

1. Irregular structures with low conflict frequency
2. Low conflict structures with high read-sharing and

complex operations
3. Read-mostly structures with frequent read-only operations
4. Composable modular structures and functions

28 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Irregular Structures
 Irregular structures with low conflict
frequency
–E.g., graph applications (minimum spanning

forest sparse graph, VPR and FPGA)
–Advantages: concurrency and ease of

deadlock-avoidance, ease of programming

Operation by Thread 1

Operation by Thread 2

29 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Why Not Locks?
 If conflicts arise, fine-graining locking can
lead to deadlocks or degraded performance

Operation by Thread 1

Operation by Thread 2

How do you implement this?
Operations by both Thread 1 and 2

30 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Low Conflict Structures
 Low conflict structures with high read-
sharing and complex operations
–E.g. red-black trees, AVL trees
–Advantages: ease of parallelization, high

concurrency, low cache coherence traffic,
ease of programming

Updated by Thread 1 Updated by Thread 2

Read-Only Traversal

31 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Read-Mostly Structures
Read-mostly structures with frequent
read-only operations
–E.g. search structures
–Advantages: high concurrency, read-only

operations avoid writing (avoid unnecessary
cache coherence traffic)

Read-Only Operation by Thread 1

Read-Mostly Search Structure

Read-Only Operation by Thread 2

32 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Composition / Modularity
Arbitrarily composable modular
structures and functions
–Advantages: modular design, code

maintainability, ease of programming (e.g.,
using STL)

__transaction {
 // Search an arbitrary structure A for an item with an arbitrary key K
 // If found, remove that item (X) from A
 X = remove(A,K);
 if (X != NULL)
 {
 // Depending on X’s value, insert X in an arbitrary structure B
 B = f(X->Value);
 insert(B,X);
 }
}

33 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Usability

34 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Two User Studies
 Is Transactional Programming Actually
Easier?
–Chris Rossbach, Owen Hofmann, Emmett Witchel
–3-year study of undergrad class (237 students)
–presented at PPoPP 2010

A Study of TM vs. Locks in Practice
–Victor Pankratius, Ali-Reza Adl-Tabatabai
–6 groups, each with 2 Masters students
–presented at SPAA 2011

35 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Is Transactional Programming
Actually Easier?
 “Sync-gallery” programming assignment

–part of undergrad OS course
– 2 sections in each of 3 semesters, each a year apart
– 237 students total

–assignment had 3 variants (see next slide)
–each student implemented each variant 3 ways

– coarse-grained locking, always done first
– fine-grained locking
– TM (library-based support only)
– randomly assigned which of fine-grained locking or TM-

based to implement first

36 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Sync-gallery assignment
 “Rogues” shoot paint balls in “lanes” at a gallery

– 2 rogues (one shoots red, the other blue), 16 lanes
 Four properties

– only one rogue can shoot in a lane at a time
– must shoot in “clean” lane
– clean all lanes when there are no more clean lanes
– only one thread cleaning at a time (no concurrent

shooting)
 Three variants

– rogue reserves one lane at a time, cleans all lanes if it
dirties the last lane

– same as above, except rogue reserves two lanes at a time
– all cleaning by separate cleaner thread; coordinate via

condition variable

37 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Development Effort: year 2

0

0.5

1

1.5

2

2.5

3

3.5

4
c

o
a

rs
e

fi
n

e

tm

c
o

a
rs

e

fi
n

e

tm

c
o

a
rs

e

fi
n

e

tm

single-lane two-lane cleaner

debug
code
design

38 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Qualitative preferences: Y2

Ranking 1 2 3 4
Coarse 62% 30% 1% 4%
Fine 6% 21% 45% 40%
TM 26% 32% 19% 21%
Conditions 6% 21% 29% 40%

Ranking 1 2 3 4
Coarse 81% 14% 1% 3%
Fine 1% 38% 30% 29%
TM 16% 32% 30% 21%
Conditions 4% 14% 40% 40%

Best Syntax

Easiest to Think about

(Year 2)

39 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Analyzing Programming Errors

Error taxonomy: 10 classes
–Lock-ord: lock ordering
–Lock-cond: checking condition outside critical section
–Lock-forgot: forgotten synchronization
–Lock-exotic: inscrutable lock usage
–Cv-exotic: exotic condition variable usage
–Cv-use: condition variable errors
–TM-exotic: TM primitive misuse
–TM-forgot: forgotten TM synchronization
–TM-cond: checking conditions outside critical section
–TM-order: ordering in TM

40 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Error Rates by Defect Type

0%
10%
20%
30%
40%
50%
60%
70%

Y1 Y2 Y3

41 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Overall Error Rates

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Y1 Y2 Y3

Geometric Mean:
 Coarse Locks: 27%
 Fine Locks: 62%
 TM: 10%

Locks: 58-75%

TM: 8-20%

42 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Overall Error Rates: Year 2

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

43 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Comments and conclusions

TM problems
–lack of documentation/tutorial
–initial syntax of library-based TM

– better in years 2/3 with different TM library

Students found
–TM harder than coarse-grained locking
–TM easier than fine-grained locking and

condition vars.

Much fewer errors for TM than for locking

44 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

A Study of Transactional
Memory vs. Locks in Practice
 “Explorative case study”

–Broad scope
–Less control, more realism
–Lessons learned on a case-by-case basis
–Programmed a desktop search engine

45 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

The Project:
Parallel Desktop Search Engine
 15 week project
 12 subjects (Master‘s students)

– Prior to project, same training for everyone
(Parallel programming, locks / Pthreads, TM using Intel‘s STM
compiler)

– Randomly created 6 teams (2 students each)
– 3 teams randomly assigned to use locks
– 3 teams TM + Phreads

– All using the same spec for indexing and search

 Collecting evidence
– Code, svn, time records, weekly interviews,

student diaries, notes, post-project questionnaire,
observations

46 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Code
• Average LOC about the same
• TM teams have fewer LOC with parallel

constructs (2%-5% vs. 5%-11%)

47 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group PD Dr. Victor Pankratius

Code
 Locking programs more complex than TM

–code inspections revealed thousands of locks

TM teams combined transactions and locks
–TM2: one lock to protect a large critical section

containing I/O
–TM3: two semaphores for producer-consumer

synchronization

All locks teams used condition variables,
but none of the TM teams did

Sync constructs rarely lexically nested

48 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group PD Dr. Victor Pankratius

Code inspections with compiler
experts at Intel
 Locks programs need fine-grained locking for

scalability, but many locks complicate program
understanding
– L2: 1600 locks, L3: 80 locks, L1: 54 locks

– L2 the only locking program to scale on indexing

 TM teams used locks and transactions to perform
producer-consumer synchronization, perform I/O,
and optimize access to immutable data
 Double-checked locking patterns in both locks and

TM teams
– Attempt to optimize performance

 Common mistake: unprotected reading of shared
state. Exception: L1

49 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Programming Effort

Less for TM

Increase for TM teams in last
weeks: Refactoring
transactions, performance
problems, experiments

~14% difference in total
programming effort in
favor of TM

50 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Programming Effort

Debugging segfaults
• Locks teams: 55 hours (59%) of debugging time
• TM teams: 23 hours (29%) of debugging time
 Influenced by LOC containing parallel constructs

51 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group PD Dr. Victor Pankratius

Parallelization Progress
 TM allowed teams to think more sequentially

– spent 50% less time as the locks teams on writing
parallel code

– Hours spent on sequential code versus parallel code
– Time lag between the first day of work on sequential code and

the first day of work on parallel code
– (L1 :1 day, L2: 13 days, L3: 19 days) vs. (TM3, 19 days, TM2: 23 days, TM1: 29

days)
– Yet TM3 had first working parallel version, even though they

subjectively believed they advanced slowly

 By project deadline
– L1 had performance problems, skipped performance tests
– L2 did not finish performance tests
– L3 discovered a new concurrency bug (winner for locks)
– TM1 fails on benchmark
– TM2 reasonable performance
– TM3 excellent (winner for TM)

52 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group PD Dr. Victor Pankratius

Performance
 TM3 outperforms

on indexing
performance and
most teams on
query performance

 Counterexample

that TM
performance need
not be bad in
practice

53 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Performance

54 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Is TM Fast Enough?
Many different STMs with different goals
(and different guarantees)
–TL2: baseline state-of-the-art
–TinySTM: added safety guarantees (opacity)
–NOrec: generalized support of many features
–InvalSTM: contention-heavy programs
–SkySTM: scalable to upwards of 250 threads

How to choose?
–Use adaptive algorithm (Wang et al., HiPEAC’12)
–Change TM without changing client code

55 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Commercial Hardware TMs
Azul Systems’ HTM (phased out?)
AMD ASF (unknown status)
Sun’s Rock (cancelled)
 IBM’s Blue Gene/Q (2011)
 Intel’s TSX (code named Haswell) (2012)
 IBM’s zEC12 (2012)

HTM will only improve existing STM
performance

56 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Commercial/OS Compilers
Sun Studio (for Rock)
 Intel STM
 IBM AlphaWorks STM (for BG)
GNU 4.7
 IBM xlC z/OS v1R13 compiler

57 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Intel 12.2 and GNU 4.7
support
Both based on Draft C++ TM spec
 Intel is based on V1.0, but has many
extensions
GNU is based on V1.1

–See slide on Draft 1.1 addition for differences

Both use a form of Intel TM ABI V1.1
2006/05/06
–GNU does not implement all of the ABI (mostly

missing the Intel TM extensions)

58 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Intel C++ STM Prototype
Edition 4.0

 All of Draft 1.0 + extensions in support of the Intel ABI
– So no block support, uses GCC attributes for atomic and relaxed

transactions
 Intel extensions:

– New language constructs __tm_atomic { …} else { … } and __tm_wavier
{…}

– New function annotations __tm_safe, and tm_wrapping with support for
registering commit and undo handlers for writing advanced transactional
libraries

– Transactional C++ new/delete, constructor and destructor support
– TM annotation for template classes
– Support for abort-on-exception semantics with explicit _tm_abort throw

<exception>
– New compiler and runtime optimizations
– Support for transactional C++ STL library

59 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

GNU 4.7
All of Draft 1.1 except

–No support for _transaction_cancel throw, no
rollback on exceptions
– Commit on throw is the default

–No checking of consistency of function attributes
–Not sure if it fully supports templates, they never

checked

60 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

IBM xlC zSeries V1R13
 IBM XL C/C++ Compiler Maximizes zEC12’s
Transactional Execution Capabilities by
Marcel Mitran and Visda Vokhshoori,
Offers Low level transactional library
functions
–Enables begin, end, abort, nesting depth

http://www.ibmsystemsmag.com/authors/Visda-Vokhshoori/�

61 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Real-World STM Application
Transactional Memory Support for Scalable
and Transparent Parallelization of
Multiplayer Games

–Daniel Lupei, Bogdan Simion, Don Pinto, Mihai

Burcea, Matthew Misler, William Krick, Cristiana
Amza

–application: SynQuake, simulates Quake battles
–used software-only TM (STM)
–presented at EuroSys 2010

62 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Multiplayer games

More than
100k
concurrent
players

Game server is the bottleneck
PD Simion et al.

63 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Game interactions

Action bounding box

Game map

PD Simion et al.

64 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Collision detection

Action bounding box

Game map

PD Simion et al.

65 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Conflicting player actions
Game map

T1

T2

Need for
synchronization

PD Simion et al.

66 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Player actions
Compound action:

 - move, charge

 weapon and shoot

healthpack

ammunition
Requirement:

consistency and atomicity
of whole game action

PD Simion et al.

67 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Conservative locking

Subaction 1

Subaction 2

Subaction 3

Lock 1, Lock 2, Lock3

Unlock 1,2,3

G
A

M
E

A
C

TI
O

N

Conservatively acquire
all locks at beginning

of action

Problem 1:
Unnecessarily long

conflict duration

PD Simion et al.

68 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Conservative locking

Conservative estimate of
impact range at

beginning of action

Problem 2:
Unnecessarily high

number of locked objects

PD Simion et al.

69 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Fine-grained locking?

Subaction 1

Subaction 2

Subaction 3

Lock 1

Unlock 1

Lock 2

Unlock 2

Lock 3

Unlock 3

G
A

M
E

A
C

TI
O

N
 Not possible !

Problem:

- No atomicity for
whole action

PD Simion et al.

70 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Fine-grained locking?

Subaction 1

Subaction 2

Subaction 3

Lock 1

Lock 2

Lock 3

Unlock 1, 2, 3

G
A

M
E

A
C

TI
O

N
 Not possible !

Problem:

- Deadlocks
- Inconsistent view

PD Simion et al.

71 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

STM

Alternative parallelization paradigm
–Implement game actions as transactions
–Track accesses to shared and private data
–Conflict detection and resolution

Automatic consistency and atomicity

–Transaction commits if no conflict
–Transaction rolls back if conflict occurs

PD Simion et al.

72 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

STM - Synchronization

Subaction 1

Subaction 2

Subaction 3

BEGIN Transaction

COMMIT Transaction

G
A

M
E

A
C

TI
O

N

Problems solved:

- Deadlocks
- Atomicity

Handled automatically

PD Simion et al.

73 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

STM - Synchronization

PD Simion et al.

74 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

STM - Synchronization
Collision detection

optimized:

- split action into subactions

- perform collision detection
gradually for each subaction

PD Simion et al.

75 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Experimental Results

Test scenarios:
–1 – 8 quests, short/long range actions

Performance comparison
–Locks vs. STM scaling and performance
–Influence of load balancing on scaling

PD Simion et al.

76 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Scalability 8 core machine

0 1 2 4 8 3 5 6 7

1

2

3

4

5

Threads

medium contention
high contention

low contention

N
or

m
al

iz
ed

 s
ca

lin
g

 f
ac

to
r

Locks

STM scales better in all 3 contention scenarios

1 2 4 8 3 5 6 7
Threads

STM

PD Simion et al.

77 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Processing Times Medium
contention

PD Simion et al.

STM ~33% faster
than locks for 4-8
threads

78 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Conclusions

TM naturally aligns with generic
programming
Many problems are well-suited for TM
Early studies show TM to be easy to
program and less buggy than locks
Software-only TM can outperform locks

PD Simion et al.

79 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Agenda
 STM, HTM, HybridTM
 Birth of a specification
 Design Goals
 Motivation for SG5 in C++ Standard

– Use cases
– Usability
– Performance

 Language Constructs
– Transactions, atomic and relaxed
– Race-free semantics
– Unsafe statements
– Attributes
– Transaction expressions and try blocks
– Cancel
– Exception handling

 SG5 Progress

80 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group 80

Language constructs in a nutshell

4 Function attributes
transaction_safe
transaction_unsafe
transaction_callable
transaction_may_cancel_outer

3 constructs for transactions
1. Compound Statements
2. Expressions
3. Blocks: funtion-try-blocks, constructor-initializer
2 Keywords for different types of TX
__transaction_atomic [[[outer]]] [[[noexcept]]] <compound-

statement>
__transaction_relaxed [[[noexcept]]] <compound-statement>
1 keyword only applies to atomic TX
__transaction_cancel [[[outer]]] [throw (<expr>)]

81 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group 81

Transaction statement

__transaction {x++;}
__transaction_atomic {x++;} atomic

__transaction [[outer]] {x++;}

__transaction_relaxed {x++;}

outermost
atomic

relaxed

•All 3 constructs support 2 forms

•Atomic may be annotated with outer attribute

82 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group 82

Atomic & relaxed transactions

__transaction_atomic {
 x++;
 if (cond)
 __transaction_cancel;
}

All transactions appear to execute in serial order

Racy programs have undefined behavior

Appear to execute
atomically

Can be cancelled

Unsafe statements
prohibited

__transaction_relaxed {
 x++;
 print(x);
}

Cannot be cancelled

No other restrictions
on content

83 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

I/O Without Transactions

83

void foo()
{
 cout << “Hello Concurrent Programming World!” << endl;
}

// Thread 1
foo();

// Thread 2
foo();

Hello Concurrent Programming World!
Hello Concurrent Programming World! Hello Hello Concurrent Concurrent Programming
Programming World! World!

...Hello Concurrent Programming Hell World!...
(and other fun [and appropriate] variations)

84 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

I/O With Transactions

84

void foo()
{
 cout << “Hello Concurrent Programming World!” << endl;
}

// Thread 1
__transaction_atomic
{
 foo();
}

// Thread 2
__transaction_atomic
{
 foo();
}

Hello Hello ... Hello

Three Hello’s?
There are only two calls?

85 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

I/O and Irrevocable Actions: Take Two

85

void foo()
{
 cout << “Hello Concurrent Programming World!” << endl;
}

// Thread 1
__transaction_relaxed
{
 foo();
}

// Thread 2
__transaction_relaxed
{
 foo();
}

Hello Concurrent Programming World!
Hello Concurrent Programming World!

(only possible answer)

86 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Callable (for relaxed TX only)

a function (including virtual functions and
template functions) is intended to be called
within a relaxed transaction
 intended for use by an implementation to
improve the performance of relaxed
transactions;
–generate a specialized version of a

transaction_callable function, and execute that
version when the function is called inside a
relaxed transaction.

87 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Embedded non-transactional synchronization

Assume: x = 0, y = 0

__transaction_atomic {
 lock(A); ++x; unlock(A);
 lock(B); ++y; unlock(B);
}

__transaction_relaxed {
 lock(A); ++x; unlock(A);
 lock(B); ++y; unlock(B);
}

Visible state:
x = 0, y = 0
x = 1, y = 1

Visible state:
x = 0, y = 0
x = 1, y = 0
x = 1, y = 1

88 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group 88

Communication via synchronization

__transaction_relaxed
{
 lock (L)
 sendMessage();
 unlock (L)

 lock (L)
 receiveReply();
 unlock (L)
}

lock (L)
 receiveMessage();
 sendReply();
unlock (L)

Nested non-transactional synchronization violates
atomicity (isolation)

Will deadlock for
__transaction_atomic

89 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group 89

Incorrect Program

__transaction_atomic {
 p =new Foo(); if (p != NULL)
 f(p); t = p->x; //S
}

Racy program undefined behavior

Practically, p might be NULL in S

data
race

90 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Function Call Safety

3 features for safety of functions calls
1. transaction_safe attribute
2. transaction_unsafe attribute
3. Concept of implicitly declared safe

function
 Different combinations offer different

degrees of ability to call functions from
within atomic transactions

91 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group 91

Unsafe statements
Operations that should not nest inside atomic transactions
 Outer atomic transactions
 Relaxed transactions

Operations for which system can’t guarantee atomicity

 Access to volatile objects
 Calls to functions not declared safe
 Asm statements

Functions that break atomicity must not be declared safe

 Synchronization: operations on locks and C++0x atomics
 Certain I/O functions

92 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group 92

Functions are declared safe via transaction_safe
attribute
– May not contain unsafe statements

auto f = []()[[transaction_safe]] { g(); }

[[transaction_safe]] void foo() {…}

[[transaction_safe]] int (*p)();

Functions are explicitly declared unsafe via transaction_unsafe
attribute

[[transaction_unsafe]] void foo() {…}

Template & virtual functions may have attributes

Function safety attributes

93 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group 93

Implicit safety declarations

Non-virtual functions can be implicitly declared safe

void foo() {x++;}

__transaction_atomic {
 foo();
}

Call to foo() is safe
after the definition

Minimize attribute annotations

Help with template functions

Safe statements

94 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group 94

Implicit safety & template functions

template <class Op>
void t(int& x, Op f) { f(x++);}

void (*p2) (int);
t(v, p2);

[[transaction_safe]] void (*p1) (int);
__transaction_atomic { t(v, p1);}

Safety may be unknown till instantiation

Enables reuse of template libraries

Safe

Unsafe

95 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Class attributes

[[transaction_safe]] class C {
 void f1();
 int f2();
 [[transaction_unsafe]] void IO();
}

f1() & f2() are declared safe

IO() is declared unsafe

Syntactic sugar to minimize attribute annotations

95

96 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Transaction expressions

// exp calls copy constructor
SomeObj myObj = __transaction_atomic (exp)
SomeObj myObj = __transaction_relaxed(exp)

Transaction statements are not sufficient to express
this pattern

Evaluate expression in a transaction

96

97 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

A Simple Example

97

Obj x, y, z;

void foo()
{
 Obj tmp = x * y / z;

 // access tmp
}

Shared access: x, y, z.

How to make safe using TM?

98 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Option 1

98

Obj x, y, z;

void foo()
{
 Obj tmp = x * y / z;

 // access tmp
}

Obj x, y, z;

void foo()
{
 __transaction_atomic
 {
 Obj tmp = x * y / z;

 // access tmp
 }
}

OK, but can cost
performance (long tx).

99 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Option 2

99

Obj x, y, z;

void foo()
{
 Obj tmp = x * y / z;

 // access tmp
}

Obj x, y, z;

void foo()
{
 Obj tmp;

 __transaction_atomic
 {
 tmp = x * y / z;
 }

 // access tmp
} OK, but changes behavior and suffers

double assignment penalty.

100 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Option 3

100

Obj x, y, z;

void foo()
{
 Obj tmp = x * y / z;

 // access tmp
}

Obj x, y, z;

void foo()
{
 Obj *tmp;

 __transaction_atomic
 {
 tmp = new Obj(x * y / z);
 }

 // access tmp
 delete tmp;
} OK, but heap (de)allocation

may be slow.

101 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Using Transaction Expressions

101

Obj x, y, z;

void foo()
{
 Obj tmp = x * y / z;

 // access tmp
}

Obj x, y, z;

void foo()
{
 Obj tmp = __transaction_atomic (x * y / z);

 // access tmp
}

Yes! This is exactly what we want.

Note: Assignment
outside of tx.

102 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Function transaction blocks
class Base {
 const int id;
 Base (int _id) :
id(_id) {}
}

class Derived : Base {
 static int count = 0;
 Derived()
__transaction_atomic
 : Base (count++) {…}
}

Allow to include
member & base
class initializers in a
transaction

102

103 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Challenging Example

103

class Id
{
public:
 Id(size_t id) : id_(id) {}
private:
 size_t const id_;
};

class Account : public Id
{
public:
 Account() : Id(count++) {}
private:
 static size_t count = 0;
};

Challenges
– id_ const mem
–must be init’d in mem

initialization
– count is static (shared

memory)
– synchronize access to

count or racy
program

Many STM
cannot handle
this

104 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

C++ TM Spec Can Handle This

104

class Id
{
public:
 Id(size_t id) : id_(id) {}
private:
 size_t const id_;
};

class Account : public Id
{
public:
 // member initialization atomic / isolated
 Account() __transaction_atomic : Id(count++) {
... }
private:
 static size_t count = 0;
};

When I first saw this,
the only word that
came to mind was

“Wow!”

105 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Optimizing Atomicity

105

class Object
{
public:
 // initialization atomic/isolated
 Object() __transaction_atomic :
 arr_(alloc_.allocate()) { ... }

 // initialization & assignment atomic/isolated
 Object(Object const &rhs) __transaction :
 arr_(alloc_.allocate(rhs.arr_)) { ... }

private:
 size_t *arr_;
 static Allocator<size_t> alloc_;
};

Try doing
this with
std::mutex

Disclaimer: it can be done.

Challenging to write correctly and
efficiently!

TM doesn’t unnecessarily limit parallelism.

106 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Cancel and Cancel-throw forms
(may be removed in future)
2 forms of cancel

1. A basic cancel statement to cancel immediate
enclosing atomic transaction

2. cancel [[outer]] statement that cancels the
enclosing outer atomic transaction

 2 forms of cancel-throw statements
1. A basic cancel and throw statement
2. cancel and throw [[outer]]

107 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group 107

__transaction {

 ...

 __transaction_atomic {

 x++;

 if (cond)

 __transaction_cancel;

 }

y++;

}

Cancel Statement

Rolls back innermost
atomic transaction
statement

Continues with the
following statement

Must be in lexical
scope of atomic
statement

Cannot be applied to
transaction function
blocks & relaxed
transactions

108 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Cancel & unsafe actions

__transaction_relaxed {

 bool all_ok = false;

 __transaction_atomic {

 ...

 if (all_is_ok())

 all_ok = true;

 else

 __transaction_cancel;

 }

 if (all_ok) IO();

}

This demonstrates
Cancel and unsafe
stmts cannot execute
in the same
transaction

But this can be done
via combined atomic
nested in relaxed

Demonstrates use of
both types

108

109 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group 109

__transaction_atomic [[outer]] {
 y++;
 __transaction_atomic {
 x++;
 if (cond)
 __transaction_cancel [[outer]];
 }

}

Cancel outer statement

Rolls back outer atomic transaction
Must be in dynamic scope of outer transaction
Needs transaction_may_cancel_outer function attribute

110 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group 110

Specifies that a function may contain cancel outer statement
in its dynamic scope

[[transaction_may_cancel_outer]] void f1(){

 ... __transaction_cancel [[outer]];

}

[[transaction_may_cancel_outer]] void f2(){

 f1();

}

__transaction_atomic [[outer]] { f2();}

Declares a function safe; can be used on function pointers

May cancel outer attribute

111 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group 111

What happens on an exception?

When integer escapes the transaction
Should the effects of x++ be committed?
Or should they be rolled back?
Active debate in community

__transaction_atomic {
 x++;
 if (cond)
 throw 1;
}

112 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group 112

Both sides are right

Some programs behave surprisingly under commit-
on-escape

Others under rollback-on-escape

Observations:
 Exceptions that can unexpectedly escape a

transaction are potentially dangerous
 No single behavior appropriate for all cases

– Only the programmer can determine what’s appropriate

113 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group 113

Our approach

Support both semantics & let programmer
decide

New syntax for
 Exception specifications on transaction
statements, or expressions, but not blocks
 Throwing exceptions that roll back a
transaction
Allowed on atomic and relaxed

114 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group 114

Exception specification (may
change in future)

Specify whether an exception is allowed to propagate
outside of scope (xxx=atomic/relaxed)

Terminate if exception does not match

Default: all exceptions allowed to escape

–Consistent with C++11 exception specifications
–Use at your own risk

__transaction_xxx noexcept(true) {…}// not allowed
__transaction_xxx noexcept {…}// not allowed
__transaction_xxx noexcept(false) {…}// allowed

__transaction_xxx {…}// default allowed

Terminate if contract violated
No specification?

115 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group 115

Commit-on-exception

Standard syntax for exception throw

Easy to specify that any exception may commit

__transaction_atomic noecept(true) {
 try {
 throw 1;
 } catch (int & e) {
 …; //exception caught here
 }
}

__transaction_atomic noexcept {
 exception_throwing_fun();
}

116 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group 116

Rollback-on-exception

Syntax for exception throw

Exception must be enums or integrals

try {
 __transaction_atomic noexcept(false){
 try { ...
 __transaction_cancel throw 1;
 } catch (int& e) {
 assert(0); //never reached!
 }
} catch (int &e) {
 cout <<“Caught e!” << endl;
}

117 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Restrict exceptions to enum/integral?

117

try
{
 __transaction_atomic noexcept(false)
 {
 ...
 __transaction_cancel
 throw TxException(txState);
 }
}
catch (TxException &e)
{
 cout << e.state(); // CRASH!
}

Accessing state that
no longer exists.

118 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Agenda
 STM, HTM, HybridTM
 Birth of a specification
 Design Goals
 Motivation for SG5 in C++ Standard

– Use cases
– Usability
– Performance

 Language Constructs
– Transactions, atomic and relaxed
– Race-free semantics
– Unsafe statements
– Attributes
– Transaction expressions and try blocks
– Cancel
– Exception handling

 SG5 Progress

119 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Straw poll results from
Bristol
 Change the term "relaxed transaction“ : SF: 3, F:2, N:2, WA:

2, SA: 2.
 Straw poll: explicit cancellation: SF:0, WF: 4, N:0, WA: 8, SA:

1
 Straw poll: ability to cancel on escaping exception: SF:4, WF:

2, N:1, WA: 6, SA: 0
 Straw poll: provide syntax support for commit on escaping

exception: SF:4, WF:4, N:0, WA:2, SA:2
 Straw poll: at least enough support for simple data escape

(integral and enumeration types only): SF:3, WF:3, N:2,
WA:1, SA:2
 Straw poll: advanced data escape along Torvald's

presentation: SF:0, WF:0, N:2, WA:3, SA:6
 Straw poll: atomic transactions: SF:6, WF:1, N:2, WA:2, SA:0
 Straw poll: relaxed transactions: SF:5, WF:3, N:1, WA:2,

SA:0

120 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group

Latest current status
 Intend to file for a TS NP/CD in October
2013, Chicago Standard meeting
Presented at ACCU2013, ADC++2013,
C++NOW 2013
Many people very interested in supporting
work
Started work on standarese wording

–Object model
–Syntax support
–Library safety

121 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group 121

Summary
TM adoption requires common high-level
interfaces

- SG5 Opens path for standard language
extensions & semantics

 -proposed draft TS specification for 2017
 –hardware is here and now
 - would you want C++ 2017, or 2022 that
has no TM support?

We need feedback, all are welcome to join:
 https://groups.google.com/forum/?hl=en&fr
omgroups=#!forum/c-tm-language-
extensions

122 Transactional Language Constructs for C++ (N3341) C++ TM Drafting Group 122

My blogs and email address
 http://isocpp.org/wiki/faq/wg21:michael-wong

OpenMP CEO: http://openmp.org/wp/about-openmp/
My Blogs: http://ibm.co/pCvPHR
C++11 status: http://tinyurl.com/43y8xgf
Boost test results
 http://www.ibm.com/support/docview.wss?rs=2239&context=SSJT9L
&uid=swg27006911
C/C++ Compilers Support/Feature Request Page
 http://www.ibm.com/developerworks/rfe/?PROD_ID=700
TM: https://sites.google.com/site/tmforcplusplus/

 Chair of WG21 SG5 Transactional Memory
 IBM and Canada C++ Standard Head of Delegation
 ISOCPP.org Director, Vice President

Tell us how you use OpenMP:
 http://openmp.org/wp/whos-using-openmp/

http://wiki.apache.org/stdcxx/C++0xCompilerSupport�

	Transactional Language Constructs for C++, and C, and Fortran (maybe)
	Acknowledgement and Disclaimer
	Agenda
	Where were you in 1993?
	Where is transactions in the grand scheme of Concurrency
	Transactional Memory
	Lock elision
	Why TM?
	What is Transactional Memory (Again) ?
	Reasons for “I Hate TM”
	Mission creep and Hype Cycle
	Language support
	Agenda
	Why do we need a TM language?
	What is hard about adding TM to C++
	Agenda
	Design goals
	Agenda
	Overview
	Slide Number 20
	Locks are Impractical for�Generic Programming=callback
	What locks does x = y acquire?
	Transactions Naturally Fit�Generic Programming Model
	The Problem
	Don’t We Know This Already?
	Conclusion
	TM Patterns and Use Cases
	Irregular Structures
	Why Not Locks?
	Low Conflict Structures
	Read-Mostly Structures
	Composition / Modularity
	Slide Number 33
	Two User Studies
	Is Transactional Programming Actually Easier?
	Sync-gallery assignment
	Development Effort: year 2
	Qualitative preferences: Y2
	Analyzing Programming Errors
	Error Rates by Defect Type
	Overall Error Rates
	Overall Error Rates: Year 2
	Comments and conclusions
	A Study of Transactional Memory vs. Locks in Practice
	The Project: �Parallel Desktop Search Engine
	Code
	Code
	Code inspections with compiler experts at Intel
	Programming Effort
	Programming Effort
	Parallelization Progress
	Performance
	Slide Number 53
	Is TM Fast Enough?
	Commercial Hardware TMs
	Commercial/OS Compilers
	Intel 12.2 and GNU 4.7 support
	Intel C++ STM Prototype Edition 4.0
	GNU 4.7
	IBM xlC zSeries V1R13
	Real-World STM Application
	Multiplayer games
	Game interactions
	Collision detection
	Conflicting player actions
	Player actions
	Conservative locking
	Conservative locking
	Fine-grained locking?
	Fine-grained locking?
	STM
	STM - Synchronization
	STM - Synchronization
	STM - Synchronization
	Experimental Results
	Scalability
	Processing Times
	Conclusions
	Agenda
	Language constructs in a nutshell
	Transaction statement
	Atomic & relaxed transactions
	I/O Without Transactions
	I/O With Transactions
	I/O and Irrevocable Actions: Take Two
	Callable (for relaxed TX only)
	�Embedded non-transactional synchronization
	Communication via synchronization
	Incorrect Program
	Function Call Safety
	Unsafe statements
	Function safety attributes
	Implicit safety declarations
	Implicit safety & template functions
	Class attributes
	Transaction expressions
	A Simple Example
	Option 1
	Option 2
	Option 3
	Using Transaction Expressions
	Function transaction blocks
	Challenging Example
	C++ TM Spec Can Handle This
	Optimizing Atomicity
	Cancel and Cancel-throw forms (may be removed in future)
	Cancel Statement
	Cancel & unsafe actions
	Cancel outer statement
	May cancel outer attribute
	What happens on an exception?
	Both sides are right
	Our approach
	Exception specification (may change in future)
	Commit-on-exception
	Rollback-on-exception
	Restrict exceptions to enum/integral?
	Agenda
	Straw poll results from Bristol
	Latest current status
	Summary
	My blogs and email address

