
Allocators for Shared Memory in C++03,
C++11, and Boost

ACCU 2013, Bristol

Frank Birbacher
Inform GmbH, Aachen

13th April 2013, r210

C++ allocators are rarely looked at but for using shared memory as a means of
interprocess communication they spring to mind. For a long time this was a good idea in
theory but in practice not until C++11. Explaining allocators and their use case “shared
memory” is the focus here. Shared memory is shown using tne Boost.Interprocess library.

Contents
1 Allocators 03 2

1.1 Idea . 2
1.2 Definition . 3
1.3 Problems in C++03 . 6

2 Shared Memory 8
2.1 What is it? . 8
2.2 Pointers in shared memory . 9
2.3 Boost.Interprocess: The Big Picture . 11
2.4 String in shared memory . 12

3 Allocators 11 16
3.1 What’s new in C++11? . 16
3.2 Scoped allocator . 19

4 Appendix 22
4.1 Allocator 03—details . 22
4.2 std::list 03 using an allocator . 23
4.3 std::list 11 using an allocator . 24
4.4 Propagating allocators 11 . 25
4.5 Source code: strings in shared memory . 26

Allocators and Shared Memory Frank Birbacher

Goals of this presentation Slide 2

• show functionality of allocators
• show allocator use in shared memory
• compare allocators in C++03 and C++11
• show the scoped allocator adaptor

The functionality of C++03 allocators is explained and how the idea of allocators can
be leveraged for accessing shared memory. Examples will demonstrate construction of
standard containers in shared memory. Afterwards the changes to allocators in C++11
will be shown. These changes influence the way containers use allocators and they enable
more control over object construction. This will be shown with the scoped allocator
adaptor.

1 Allocators 03
1.1 Idea
The hidden strategy Slide 5

• allocator is parameter of containers
• allocator is member of containers
• strategy pattern
• rarely changed

namespace std {

template<
typename T,

typename Alloc = std::allocator<T> // <==
>

class list { ... };

An allocator is rarely looked at. It is a template parameter of every standard con-
tainer and defaults to std::allocator. If changed this parameter will influence the way a
container interacts with memory. Additionally an instance of the given type is stored as
a container member. As such the allocator is a strategy object that may carry state.

Concept Slide 6
Influence …

• access to objects
– abstraction from memory model
– for example far and near pointer (Intel x86 16bit)

• allocation scheme

r210 2 Inform GmbH, Aachen

Allocators and Shared Memory Frank Birbacher

– changing allocation strategy
• object construction

– influence initialization ùñ C++11 scoped allocator

by defining …

• types for pointer and its arithmetic
– usually T*
– could be a pointer like class
– could be separate pointer type provided by compiler

• replacements for “malloc” and “free”
– called “allocate” and “deallocate”
– they match pointer type
– provide uninitialized memory

• wrappers for object con-/destruction
– called “construct” and “destroy”
– initialise given memory

An allocator has three tasks: first it defines how memory and objects are addressed
and accessed, second it may change the way to allocate raw memory, and third it can
influence object construction.
Allocators were invented in 1994 in preparation of the C++1998 standard. It was en-

visioned allocators could enable access to different types of memory like shared memory,
persistent memory, or different memory hardware in embedded systems. Alexander
Stepanov, the original author of the STL, said the following:

A nice feature of STL is that the only place that mentions the machine-related
types in STL—something that refers to real pointer, real reference—is encap-
sulated within roughly 16 lines of code. (Alexander Stepanov, in Dr. Dobb’s
Journal, March 1995)

1.2 Definition
Functionality of allocators Slide 8
template<typename T> struct allocator

raw mem:

T = value_typeobject:

allocate deallocate

construct destroy

r210 3 Inform GmbH, Aachen

Allocators and Shared Memory Frank Birbacher

• two step object construction
• allocation and construction separated

Before showing the raw definition of allocators we take a look at the functionality of
allocators. That is the way they are used to create new objects in memory.
An allocator is usually a class template with a parameter. This parameter is called

the value type. The allocator is prepared to provide and initialize memory for its value
type.
The object construction and memory allocation are separated. Memory is allocated by

calling the function allocate which returns uninitialised memory. This memory is initial-
ised using the function construct. On the reverse the functions destroy and deallocate
free the object.
A quick reference of all allocator members is given in the appendix, see page 22.

Pointer type Slide 9
Task 1: define pointer type

template<typename T> struct allocator

{

typedef T value_type;

typedef ... pointer; // T*
typedef ... const_pointer; // T const*
typedef ... reference; // T&
typedef ... const_reference; // T const&

typedef ... size_type; // size_t
typedef ... difference_type; // ptrdiff_t
...

An allocator defines a bunch of types. At first it publishes its value type. But the
most important one is the pointer type. It may be any pointer like type that overloads
operators -> and unary * and acts like a random access iterator. The pointer type is
accompanied by the respective reference type and types for pointer arithmetic. The
size_type is unsigned while the difference_type is signed and is the result of pointer
subtraction.

Malloc and free Slide 10
Task 2: change allocation scheme

template<typename T> struct allocator

{ ...

pointer allocate(size_type nObjs, void* hint =0);

// malloc(nObjs * sizeof(T))

void deallocate(pointer p, size_type nObjs);

r210 4 Inform GmbH, Aachen

Allocators and Shared Memory Frank Birbacher

// free(p)
...

Besides the pointer type the allocator provides the functions allocate and deallocate.
They act similar to malloc and free in that they provide uninitialised memory. But they
define the size of the request in number of objects of value type, not in number of bytes.
A possible implementation of allocate could call malloc. It would multiply the number

of objects and the size of its value type to determine the number of bytes required. The
optional hint pointer can have special meaning which is solely defined by the allocator.
On the slide the hint pointer is shown with type void*, but actually it has the pointer
type of the void instantiation of the allocator:

allocator<void>::const_pointer.

The value of the hint must be a still valid—not deallocated—previously allocated memory
block. For instance it could be a request to place the new allocation near the old one in
order to increase data locality.
Note that the deallocate function also takes the size of the block. This is unusual,

but the value is usually known and it may help the allocator implementation on custom
allocation schemes.

Construction and Destruction Slide 11
Task 3: wrap object construction

template<typename T> struct allocator

{ ...

// in C++03:
void construct(pointer, T const&);
void destroy(pointer);

...

For actual object construction and destruction the functions construct and destroy are
provided. The first one copies a given object instance into the memory that the pointer
points to. That means construct will invoke the copy constructor of T. The function
may have side effects.
The second function simply has to invoke the destructor of the object pointed to. It

may have side effects as well. This very limited functionality of construct and destroy is
enhanced in C++11.

Changing value type Slide 12

A = allocator<int>
list<int, A>

allocator<list::node>

gets

rebind+ctor

wants

r210 5 Inform GmbH, Aachen

Allocators and Shared Memory Frank Birbacher

template<typename T> struct allocator

{ ... // ”template typedef”:
template<typename U> struct rebind

{ typedef allocator<U> other; };

// constructor:
template<typename U>

allocator(allocator<U> const&);

The allocator instances passed to standard containers always specify the same value
type as the container. But for some containers objects of different type have to be created
in memory. For instance the std::list will construct list nodes with extra pointers to store
the links to next and previous nodes. This means a list<int> gets an allocator for int
but requires an allocator for its node<int> type.
In order to enable construction of nodes the list needs to somehow “rebind” the given

allocator type to a new value type. This is accomplished by a nested class template
named “rebind” that provides a new allocator instantiation. This is like the new C++11
alias templates, but in old C++98 style.
The rebind template is accompanied by a converting constructor that converts any

allocator object into its own type. Using the rebind template the list determines the
rebound allocator type and using the constructor it converts any allocator object passed
in to that new type. It will store and use that converted object as a member.
A quick reference of all allocator members is given in the appendix, see page 22.

std::list using an allocator Slide 13

struct node { };next prev T value

allocate deallocateAlloc

construct destroyAlloc

Continuing with the list the picture shows the steps to construct a list node. On
the rebound allocator the allocate function provides the list with memory for a single
node. In that memory the list constructs a node by means of the construct function. The
node contains the list pointers and the actual list element type. As this demonstrates the
element type T is not constructed by the allocator directly. That’s why the allocator<T>
is of no direct use. Everything is done by the allocator<node<T> >. Code that shows
the approach can be found in the appendix, see page 23.

1.3 Problems in C++03
Problems in the definition Slide 15

• reference type redundant

r210 6 Inform GmbH, Aachen

Allocators and Shared Memory Frank Birbacher

– will always be T&, no replacement possible
– cannot overload operator .

• lengthy definition
– mostly according to the book

• construct copies argument
– no in-place construction
– only copy possible

• construct/destroy restricted
– construct: new((void*)p) T(t)
– destroy: (*p).~T()

• bothersome default constructor
• behaviour on container copy/assign/swap unclear

The specification of allocators in the C++03 standard comes with some restrictions
and problems. The reference typedef can be freely defined by an allocator, but possible
definitions are restricted to T&. No other type can be used in place of a reference since
the operator . cannot be redefined. Alone compiler extensions could provide replace-
ments. In effect the reference type is pinned to T& and thus it is redundant.
The definition of a custom allocator encompasses a bunch of typedefs and functions,

most of which are identical to the std::allocator and only few are actually changed. There
are no utilities to help in defining a custom allocator. This makes own definitions long.
The construct method restricts object construction. It requires a prototype object that

will be copied into the given memory location. There is no way to avoid the copy or use
different constructors besides the copy constructor. The destruct function is required to
call the object destructor.
A serious restriction is for allocators to have default constructors. This becomes visible

when an allocator has members that need to be initialised. Often there is no sensible
default for the allocator state. Using such a default constructed allocator can only be
disabled by runtime checks.
At last the behaviour of a container assignment is not clear. An allocator might be

transferred on container copy assignment, or it may not. Same for container swap. The
question seems simple, but in practise it might not.

Shortcomings in implementation Slide 16
Standard containers may assume …

• “pointer” is always T*
• operator == always returns true

– all allocator instances compare equal
– thus an allocator doesn’t need member variables

• allocator without state

r210 7 Inform GmbH, Aachen

Allocators and Shared Memory Frank Birbacher

– no member variables anyway
– allocator not copied along with container

One of the major shortcomings of the C++03 allocators is their option on implement-
ation. An implementor of the STL may assume the allocator does not use a custom
pointer type and the operator == for the allocator always returns true. This means
there is no sense in giving allocators any member variables that define state. Because an
allocator object compares equal to any other it does not need to be copied or swapped
along with containers.
This seriously limits the use of custom allocators and maybe led to late adoption of

proper allocator handling in STL implementations. Some implementations fail to cope
with changed pointer types.

2 Shared Memory
2.1 What is it?
Rough idea Slide 18

void* base = open_shmem(”identifier”);

• memory block with identifier
• same data for all processes
• data race issues as with threads
• persisted in file

Shared memory is enabled by hardware when processes use a virtual address space
that is mapped to physical memory on the fly during program execution. It can easily
be arranged for two processes to use the same physical memory through different virtual
addresses in their respective address spaces. Shared memory is provided by the operating
system as a named memory block. Data in this block is the same for all participating
processes at all times.
The fact that two processes access the same physical memory is no different from two

threads accessing the same memory. That’s why we have to face the same data race
issues as with threads.

Uncertainty of base address Slide 19

r210 8 Inform GmbH, Aachen

Allocators and Shared Memory Frank Birbacher

1 3

P1

P2

adr

4 5 6

4 5 6

Base address different …

• for different processes
• for different runs of same exe
• for repeated calls to “open”

The memory block that represents the shared memory is accessed by a process using
regular pointers. The pointer to the beginning of the memory block is called the base
address. It may differ in different processes although they’ve access to the same shared
memory. The base address may also differ for repeated execution of the same program.
This can be compared to the behaviour of malloc.

2.2 Pointers in shared memory
Pointing to outside of shared memory Slide 21

7

P1

P2

adr

7

7

abc

?

• P1 stores “7”
• “7” points to “abc” outside shmem
• “abc” not found by P2

In the picture two processes are shown that have a linear address space—shown as
horizontal rectangles—with increasing addresses from left to right. They share the high-
lighted potions of their memory.
When using shared memory to transfer data between processes it does not suffice to

store a data pointer in shared memory. Suppose the data “abc” is to be transferred
from P1 to P2 and the data is located at address 7 in P1. P1 stores the 7 in the shared
memory. But this pointer is of no use in P2 since the data is not accessible. The data
to be transferred needs to be stored in shared memory, too.

r210 9 Inform GmbH, Aachen

Allocators and Shared Memory Frank Birbacher

Pointing to shared memory Slide 22

2

P1

P2

adr

2

2

abc

abc?

• P1 stores “2”
• “2” points to “abc” inside shmem
• “abc” not found by P2

In this scenario the process P1 stores the data “abc” in shared memory and also stores
the pointer to the data there. The pointer has value 2 and P2 can read it. But since
the base address of shared memory blocks may be different in different processes there
is no use in reading the address 2 in P2. The second process fails to access the data.

Using offset Slide 23

2 4

P1

P2

adr

-2

-2

abc

abc

• offset “-2” points to “abc”
• “abc” now found by P2
• function pointers won’t work

Here the process P1 stores an offset to the data “abc”. The offset is calculated between
the location where the offset is stored and the location of the data. The process P2 reads
the offset and can now determine the correct address of the data in terms of its own
address space. In general regular pointers in shared memory are useless. Because of this
Boost uses offsets throughout its Interprocess library, at least internally.

r210 10 Inform GmbH, Aachen

Allocators and Shared Memory Frank Birbacher

The Boost offset_ptr Slide 24

template<typename T> struct offset_ptr

{

ptrdiff_t offset;

offset_ptr(T* p)

: offset(p - this) // in bytes
{}

...

• stores offset from self
• retrieve pointer on dereference
• can be placed in shmem

To ease the use of offsets Boost defines an offset_ptr template. It stores a pointer by
calculating the offset of the pointee to its own location and storing that difference. Upon
access the offset_ptr can retrieve the original pointer by using the stored offset and its
own this pointer.

2.3 Boost.Interprocess: The Big Picture
Managed shared memory Slide 26
shmem manager provides:

• uniform scheme to start ipc
• memory algorithm
• named objects

When seriously using shared memory for interprocess communication one usually cre-
ates some interface that is stored at the very beginning of the shared memory block. This
interface enables further communication of object locations in the block and somehow
provides an memory allocation scheme in case two processes want to place a new object
simultaneously. There is need for an memory algorithm and synchronisation methods.
Both of which are provided by the Boost managed shared memory. Additionally new
objects can be given a string identifier and can be located by using this string. This
makes utilisation of the shared memory easy in the beginning.

Parts in Boost.Interprocess Slide 27

r210 11 Inform GmbH, Aachen

Allocators and Shared Memory Frank Birbacher

containers

allocator

shmem manager

shmem

OS

offset_ptr

memory algorithms

synchronization

OS

high level

low level

The Boost.Interprocess library provides lots of services. The most fundamental ones
are the shared memory and the interprocess synchronisation methods. Both interact
directly with the operation system and are show in the lower level of the diagram.
The higher level entities build upon the lower level. The shared memory manager

combines memory algorithms with object naming. An allocator uses the manager to
provided containers with memory allocated from a given shared memory block. It utilises
the offset pointer to make containers suitable for shared memory.

Starting an example Slide 28

// get ”handle” to shared memory:
boost::interprocess::managed_shared_memory

// creation / name / size
segment(open_or_create, ”identifier”, 65536);

// no fiddling with base address:
MyType *instance = segment.construct<MyType>

(”MyType instance”) //name of the object
(0.0, 0); //ctor arguments

To actually use a managed shared memory segment we construct a managed_shared_
memory object and pass it the identifier for our segment and an initial size. If a segment
has already been created with that identifier we just start to participate. Otherwise we
create it with the specified size.
The segment object has methods that create named objects and construct them in

place. We create an instance of MyType that is named “MyType instance” by calling
construct. It’s constructed with two constructor arguments. By using the identifier
another process can retrieve a pointer to the instance without explicitly fiddling with
offsets or the base address of the segment.
The above example will serve as a base for the next couple of slides.

2.4 String in shared memory
Boost Interprocess Allocator Slide 30

r210 12 Inform GmbH, Aachen

Allocators and Shared Memory Frank Birbacher

allocator is class template on:

• value type
• segment manager

allocator function:

• pointer type is offset_ptr
• references shmem manager
• asks manager for raw memory

Our goal is to place a string object into shared memory. To accomplish this we will
use the Boost.Interprocess allocator and containers. The allocator is a class template
on its value type and also on the segment manager. We will just use a single type of
segment manager, the one used by the managed shared memory.
The allocator does two important things: it defines the offset_ptr as its pointer type

and calls the segment manager for memory. Therefore it stores a reference to the manager
and has state.
Differing from a standard allocator the Boost allocator defines no default constructor.

The interprocess library brings its own set of containers as a drop in replacement for
standard containers. These are prepared to use an allocator without a default con-
structor. We will use the Boost containers exclusively.

Defining the string type Slide 31

using namespace boost::interprocess;

// (1st) allocator using shmem:
typedef allocator<

char,
managed_shared_memory::segment_manager

> CharAlloc;

// (2nd) parameterise basic_string:
typedef basic_string<

char,
std::char_traits<char>,
CharAlloc //allocator here
> IPCString;

For using a string in shared memory we first define an appropriate allocator type.
The string is a container of char and thus requires a char allocator. We instantiate the
interprocess allocator with char and the segment manager type.
This allocator is used to instantiate the basic_string. The basic_string template

is modeled exactly like the standard string and as such it takes the same template

r210 13 Inform GmbH, Aachen

Allocators and Shared Memory Frank Birbacher

parameters. We specify the character type and traits and the own allocator type as
template arguments. We name this string type IPCString. The raw code is shown in
the appendix, see page 26.

Constructing the string Slide 32

// (1st) make allocator instance:
CharAlloc achar(segment.get_segment_manager());

// (2nd) construct string, pass allocator:
IPCString *str = segment.construct<IPCString>

(”app title”) //name of the object
(”hello”, achar); //ctor arguments

std::cout << *str; //access string
*str = ”world”; //access string
After we’ve defined the types for allocator and string we now need to construct the

respective objects. First we create an instance of the CharAlloc and pass it the segment
manager. This way the allocator knows where to get memory from.
Second we use the manager to construct an IPCString. This string is initialised with

the literal “hello”. In order for the string to place its string data in the correct shared
memory it will receive the allocator object. This in turn knows the segment. The string
constructor will use the given allocator to get memory from the manager. The string
will copy its data into this memory.
This example just shows a string in shared memory, but in fact other container types

are equally well brought into shared memory.

List of strings Slide 33

using namespace boost::interprocess;

// (1st) allocator for whole strings:
typedef allocator<

IPCString,

managed_shared_memory::segment_manager

> StringAlloc;

// (2nd) list of strings:
typedef list<

IPCString,

StringAlloc //allocator here
> IPCStringList;

The next step is to nest containers. We’ll put a string into a list. In order to do
this we define the appropriate allocator type first. Compared to the CharAlloc here the

r210 14 Inform GmbH, Aachen

Allocators and Shared Memory Frank Birbacher

first template argument has changed to IPCString. Notice how this type itself already
depends on the interprocess allocator template.
Second we use the fresh StringAlloc type to instantiate the list. The list shall contain

strings so we give it the IPCString as the first argument. The second argument is the
according allocator type.

Constructing the list Slide 34

// (1st) make allocator instance:
StringAlloc astr(achar);

// (2nd) construct list, pass allocator:
IPCStringList *list = segment.construct<IPCStringList>

(”title list”) //name of the object
(astr); //ctor arguments

list->push_back(*str); //access list
list->push_back(”abc”); // failure?!?

And again: for creating a string list in shared memory we first instantiate the allocator.
We give it the other allocator to copy from. The conversion constructor will allow this. It
has the same meaning as if we had taken the segment manager again. But the conversion
clearly shows that the allocator is from the same template.
In a second step we construct the list. It will receive the allocator object in its con-

structor. Since this is the only argument the list will be start up empty.
We push the string from the previous slides onto the list. This works quite well: the

string will be properly copied—twice of course. But pushing a string literal will produce
a compile time error. We’ll look into this on the next slide.

Mind the allocator Slide 35

list->push_back(”abc”); //failure?!?

// mind the allocator, cumbersome:
list->push_back(IPCString(”abc”, achar)); //ok

// since Boost 1.37:
// better, still needs getting used to:
list->emplace_back(”abc”, achar); //ok

The list in shared memory seems friendly at first. But when we try to insert a string
literal it fails. The reason is the signature of the push_back method. It does not take a
string literal but an instance of its element type, namely IPCString. Thus an IPCString
is constructed temporarily just to call push_back, but this string cannot be constructed
without an allocator instance. The conversion from the literal to the IPCString calls for

r210 15 Inform GmbH, Aachen

Allocators and Shared Memory Frank Birbacher

a default constructed allocator which is not allowed. This is the point where a default
constructible allocator would quietly break the code.
To fix the call to push_back we need to explicitly construct the IPCString with the

correct allocator object. This works but it’s somewhat cumbersome. In C++11 we
could call emplace_back instead and at least save the explicit construction of the string.
Boost also offers emplace_back and it does so since version 1.37. The emplacement still
requires us to specify the allocator. C++11 helps here with the scoped allocator which
we will discuss just after presenting the C++11 allocators.

3 Allocators 11
3.1 What’s new in C++11?
Separation of definition Slide 37

• std::pointer_traits<T>
– now contains most typedefs

• std::allocator_traits<A>
– provides defaults for most operations and types

• a minimum definition contains:
– value_type
– converting constructor
– allocate / deallocate
– operator == / !=

Implementing a custom allocator has become much easier with C++11. With the
allocator_traits class providing defaults for nearly every aspect of an allocator we now
just need to override the defaults where needed. The least we need to provide is the
value_type typedef, the converting constructor, a pair of allocate and deallocate as well
as the operators == and !=.
The allocator_traits uses the new pointer_traits which contains all the typedefs for

the pointer type and its arithmetic. This allows to simply reuse the pointer_traits for
other allocators or by themselves.

Extension of definition Slide 38

• more general “construct”
– see next slide

• == becomes equivalence relation
• allocator determines copy semantics

– allocator can be copied/assigned/swapped/moved with container
• default constructor is optional

r210 16 Inform GmbH, Aachen

Allocators and Shared Memory Frank Birbacher

Besides making the definition of allocators easier the new standard also modifies and
extends the functionality of allocators. The function construct has had a major change
which we will show on the next slide. The equality operators are now simply defined as
describing an equivalence relation. It hasn’t been as clear in the old standard. Allocators
now may also influence container copy and swap semantics. Refer to the appendix for
details, see page 25. And last the need for a default constructor was removed.

“construct” made more general Slide 39

template<typename U, typename... Args>

void construct(U* const p, Args&&... args)

• in-place construction
– copy replaced by forwarded arguments
– used in “emplace_back” of containers

• arguments may be changed
• allocator<T> constructs any U

– “U” is independent template parameter
– see “changed functionality” on next slide

Some major changes have been made on the construct function. With variadic tem-
plates and perfect forwarding the construct function has become a template on its own
and is able to construct objects in-place using any accessible constructor. Additionally
the construct method now takes a pointer to any type, not just to the value type of the
allocator. This enables users to construct any type from a single allocator. This seems
counterintuitive but serves a specific purpose. The impact of this change is shown on
the next slide.
The fact that the constructor arguments are no longer limited permits the allocator to

actually change them at will. The C++11 scoped_allocator_adaptor will do just that.
It is presented in the next section.

Changed functionality with std::list Slide 40

struct node { };next prev char[] storage

T

allocate deallocateAlloc

placement new ~node()list

construct destroyAlloc

r210 17 Inform GmbH, Aachen

Allocators and Shared Memory Frank Birbacher

Let’s go back to the linked list and see what the changed allocator does to it. The
rebinding of the allocator type is as before: the list creates an allocator for its nodes.
The list uses it to allocate memory for a node, as before, too. But then there’s the
change: the list will no longer ask the allocator to construct the node. Instead it will do
so itself via placement new.
The containers are no longer permitted to construct their private helper types via the

allocator. Only the element type may and must be constructed by the allocator. That’s
why the node now only contains a POD1 in the size of the element instead of directly
having the element as a member. The allocator is asked to construct the element within
the POD. This is the point where the node allocator is used to construct the element
type. It’s the point where the new freedom of the construct function is required.
This adds a third step to the list node construction and makes using the new allocators

more complex compared to C++03. And this third step also has to be made during
deconstruction: destroy the element via the allocator, destroy the node object directly,
and then free the memory via the allocator. The code for the list example is shown in
the appendix, see page 24.

Overview of changes Slide 41

• allocators no longer “optional”

• simpler to write own allocator

• “construct” was improved

• defined container copy/assign/swap/move semantics

• usage more complex

The most important change is that allocators are now required by the standard. There
is no option to leave them out. This requires all vendors to adjust their library imple-
mentation accordingly and allows custom allocators to be used more often. Implementing
own allocators has become quite easy, too.
One major change is the construct method and its usage. Containers need to adapt

to the new protocol: only their element type may be constructed using the allocator.
Additionally you gain the flexibility of in-place construction by perfectly forwarding any
number of arguments.
In addition the allocator can now define its “propagation” semantics on container oper-

ations such as copy, swap, and move. The default is not to propagate the allocator—just
as it’s done in C++03.
The new standard has refurbished the allocator concept and made some major im-

provements. We will wait for compilers and library implementations to adapt. The
most advanced one are probably GCC 4.8 using libstdc++ and Clang 3.3 using libc++.
You can use it to experiment on your own.

1A char array in the diagram, but there is also the C++11 std::aligned_storage.

r210 18 Inform GmbH, Aachen

Allocators and Shared Memory Frank Birbacher

3.2 Scoped allocator
Recap: nested containers problem Slide 43

ipclist->push_back(”abc”); //failure
ipclist->emplace_back(”abc”, alloc); //ok

ipclist->emplace_back(”abc”, ipclist->get_allocator());

suppose IPCStringListMapVector:

• push_back takes constructed element

• must pass allocator

• cumbersome

Let’s recap on the nested containers. In a list of strings we had a compile time error
when using push_back with a string literal. This is because of the implicit construction
of a string object without an allocator given. The family of emplace functions forwards
any arguments to the string constructor. Here we can easily pass the correct allocator
instance.
The allocator to pass to the string can be converted from the allocator that the list

already has. If we are in a distant function and we are passed a list of strings we can
just take the allocator instance from the list and construct a string with it. Passing in
the allocator for all elements becomes quite cumbersome. Suppose filling a nested data
structure of type vector of maps from X to list of strings. To help here the C++11 is
equipped with an allocator adaptor.

New allocator adaptor Slide 44

#include <scoped_allocator>

template<typename OuterA, typename... InnerAllocs>

class scoped_allocator_adaptor

: public OuterA

{ ... };

• adaptor: wrap and replace “outer allocator”

• pass through most functions

• augment construct function

r210 19 Inform GmbH, Aachen

Allocators and Shared Memory Frank Birbacher

The scoped allocator adaptor takes an existing allocator and augments it. The wrapped
allocator is given as the first template argument and is called the outer allocator. It will
become a public base class of the adaptor and therefore can be used to substitute the
outer allocator in many places.
The adaptor will mostly behave just like the wrapped class except for the construct

function. The construct function is still calling the outer allocator but it may modify
the constructor arguments as is shown on the next slides.

List of strings, how it should work Slide 45

using namespace boost::interprocess;

// (1st) WOULD wrap StringAlloc:
typedef std::scoped_allocator_adapter<

StringAlloc //Boost allocator here
> ScopedAlloc;

// (2nd) WOULD define new list type:
typedef std::list< //use std here

IPCString,

ScopedAlloc //allocator here
> IPCScopedList;

The adaptor is meant to wrap and replace an existing allocator. Suppose the Boost.In-
terprocess allocator could already be used with a conforming C++11 compiler2. You
would instantiate the adaptor with the IPC allocator for strings to produce the type
ScopedAlloc. This would go into the instantiation of a standard list template to pro-
duce the type IPCScopedList. On this list we can now examine the construction of a
new element.

Influence object construction Slide 46
IPCScopedList::emplace_back(”abc”)

ScopedAlloc::construct(p, ”abc”)

StringAlloc::construct(p, ”abc”, *this)

new(p)IPCString(”abc”, *this)

• list uses wrapped allocator

2Clang 3.3 with libc++ supports the scoped allocator adaptor, but with the Boost allocator it wouldn’t
compile. Boost brings its own scoped allocator as part of Boost.Containers.

r210 20 Inform GmbH, Aachen

Allocators and Shared Memory Frank Birbacher

• injection of self

• just requires correct container types

• infinite nesting

Suppose you have created a scoped list instance and provided it with a shared memory
allocator instance. The adaptor would easily construct from the given instance and just
initialise its base class with it. When you now emplace a new string at the back of the
list you call emplace_back and pass it a string literal. The emplace_back function will
invoke the allocator construct method.
Here the magic happens: the allocator is the adaptor in this case and it will pass

construction on to its outer allocator, but append itself to the end of the arguments.
This way the outer (original) allocator is instructed to construct the string from a literal
and an allocator instance. Because the allocator instance is derived from the original
allocator class the string will happily take it to initialise its own allocator. And voilà,
every thing works out.
When you create all containers with the scoped allocator you can arbitrarily nest

them and gain the convenience on every nesting level. Only the top level container
needs to be explicitly be constructed with an allocator instance. The nested containers
will automatically be provided the allocator.

r210 21 Inform GmbH, Aachen

Allocators and Shared Memory Frank Birbacher

4 Appendix
If there is time left or if there are any questions:

4.1 Allocator 03—details
Allocators 03 Slide 51
template<typename T> struct allocator with:

• 7 typedefs
• 1 nested template
• 2+1 constructors
• 7 functions
• 1 specialisation
• 2 operators

Even if Stepanov says the machine dependent part of the STL fits into 16 lines of
code a custom allocator will contain lots of stuff. An allocator contains several typedefs
and functions which are accompanied by a few constructors and operators, a template
specialisation, and a nested class template. All the individual parts are listed on the
next slide.

Overview Slide 52

value_type, size_type, difference_type // types
(const_)pointer, (const_)reference

template rebind, allocator<void>

address, max_size // functions
allocate / deallocate

construct / destroy

allocator(); // constructors
allocator(allocator const&);
allocator(allocator<U> const&);

operator ==, operator != // operators

In this overview the many parts of an allocator in C++03 become apparent. Most of
this is boilerplate code as it won’t differ from the std::allocator. Depending on the task
you’ll typically change the pointer type, the allocate/deallocate, or the construct/destroy
function pairs.
The address function takes a “reference” and gives you a “pointer” to the object.

Here “reference” and “pointer” are the types of the allocator. The max_size function
returns a size_type and gives you an upper limit for the number of objects that could
reasonably be allocated at once using allocate. It only gives the information that for

r210 22 Inform GmbH, Aachen

Allocators and Shared Memory Frank Birbacher

larger numbers the allocation will fail. It will not guarantee that for lower values the
allocation will succeed.

4.2 std::list 03 using an allocator
Initialise std::list 03 with allocator Slide 54

template<typename T, typename Alloc>

struct list {

struct node { ... };

typedef Alloc::rebind<node>::other

allocator_type;

allocator_type m_Allocator;

...

list::list(Alloc const& a)

: m_Allocator(a) // converts allocator
{ ... }

};

The list takes an allocator type as a template argument. It will rebind the allocator
to its own node type and store an instance of the rebound allocator as a member. This
member will be initialised by the list constructors. Lots of them take an allocator object
and initialise the member with it. This will invoke the conversion constructor of the
allocator.
Note on the slide some keywords are missing. The correct syntax for rebinding the

allocator type is:

typedef typename Alloc::template rebind<node>::other allocator_type;

Elements in std::list 03 with allocator Slide 55

node& list::createNode(T const& t) {

//malloc:
pointer p = m_Allocator.allocate(1);

//construct node from t:
m_Allocator.construct(p, node(t));

//done
return *p;

}

Suppose the list had a private helper function called createNode to construct a list node
using the allocator. It could be implemented as shown. First it would allocate storage
for a single node object. The allocate function returns the type “pointer” defined by the

r210 23 Inform GmbH, Aachen

Allocators and Shared Memory Frank Birbacher

allocator. This pointer can be passed to the construct method which would then copy
construct a node. Dereferencing the pointer afterwards yields a reference to the new
node.

4.3 std::list 11 using an allocator
Initialise std::list 11 with allocator Slide 57

template<typename T, typename Alloc>

struct list {

struct node { ... };

typedef std::allocator_traits<Alloc>

::rebind_traits<node> atraits;

atraits::allocator_type m_Allocator;

...

list(Alloc const& a)

: m_Allocator(a) // converts allocator
{ ... }

};

In C++11 the use of allocators has changed. The list accesses all functionality of the
allocator via the allocator_traits. This is why it will first get hold of the correct traits
type: traits for the allocator rebound to list nodes. Rebinding will happen via template
aliases now. The rest stays the same: the list stores an allocator object and initialises it
in its constructors.

Elements in std::list 11 using allocator Slide 58

node* list::createNode(T t) {

//malloc:
pointer raw = atraits::allocate(m_Allocator, 1);

node* pNode = &*raw;

//construct node:
new(pNode) node;

//construct T in node:
T* pT = reinterpret_cast<T*>(pNode->storage);
atraits::construct(m_Allocator, pT, std::move(t));

return pNode;

}

r210 24 Inform GmbH, Aachen

Allocators and Shared Memory Frank Birbacher

The use of the new allocators is more complex as in C++03. The list still needs
to allocate memory for one node object. It will receive a “pointer” as defined by the
allocator. The odd looking “&*raw” will give you a plain node pointer which the lists
uses to construct its node in place.
The node will not immediately construct the element type, but instead provide storage

for it. It casts the pointer to the storage into the pointer to the element type so it can
call construct. The construct function is from the traits and takes the allocator as the
first argument. The traits will just pass everything on to the allocator.
Note how the list will not need to create a temporary node object. The node and the

actual element are constructed independently of each other.

4.4 Propagating allocators 11
Propagation Slide 60
Allocator defines …

• propagate_on_container_copy_assignment
• propagate_on_container_move_assignment
• propagate_on_container_swap

– typedef for std::””false_type or true_type
– all false by default

• select_on_container_copy_construction()
– function to determine new allocator object
– usually this is the identity function

The propagation semantics determine how a container shall propagate its allocator
instance in case the container is copied, swapped, moved or assigned. In the case of
copy construction the allocator can provide any new allocator instance. The function
select_on_container_copy_construction can deliver any instance, but usually it just
gives a copy of itself (identity). This function is just a hook method.
For the other cases it’s sufficient to specify whether to propagate or not. That’s defined

by compile time boolean values. A container evaluates them and acts accordingly. The
standard offers the classes std::false_type and std::true_type for this purpose.

template<typename T> struct allocator {

...

typedef std::true_type propagate_on_container_copy_assignment;

allocator

select_on_container_copy_construction() const;
};

Implementing propagation Slide 61

r210 25 Inform GmbH, Aachen

Allocators and Shared Memory Frank Birbacher

template<typename T, typename Alloc>

list<T, Alloc>&

list<T, Alloc>::operator = (list&& other) //move assign
{ ...

if(atraits::propagate_on_container_move_assignment
::value)

m_Allocator = other.get_allocator();

...

return *this;
};

The container has the responsibility to evaluate the propagation description of an
allocator and act accordingly. For a move assignment operator in a list this could look
like shown (incomplete code though). A simple “if” statement can be used to decide on
the compile time constant. When to propagate the list copies over the allocator. Here
no move semantics is possible because get_allocator returns by value. There is no way
to directly change the allocator of an existing container.

4.5 Source code: strings in shared memory

1 #include <boost/interprocess/allocators/allocator.hpp>

#include <boost/interprocess/containers/string.hpp>

#include <boost/interprocess/containers/list.hpp>

#include <boost/interprocess/managed_shared_memory.hpp>

5 #include <boost/container/scoped_allocator.hpp>

#include <iostream>

#include <ostream>

10 //#include <scoped_allocator>
//#include <list>

using namespace boost::interprocess;

15 int main()

{

managed_shared_memory segment(open_or_create, ”ipcsample”, 65536u);

typedef allocator<

20 char,
managed_shared_memory::segment_manager

> CharAlloc;

typedef basic_string<

r210 26 Inform GmbH, Aachen

Allocators and Shared Memory Frank Birbacher

25 char,
std::char_traits<char>,
CharAlloc //allocator here
> IPCString;

30 //make allocator instance:
CharAlloc achar(segment.get_segment_manager());

//construct, pass allocator:
IPCString *str = segment.construct<IPCString>

35 (”app title”) //name of the object
(”hello”, achar); //ctor arguments

std::cout << *str;

*str = ” world”; //access string
40 std::cout << *str;

typedef allocator<

IPCString,

managed_shared_memory::segment_manager

45 > StringAlloc;

typedef list<

IPCString,

StringAlloc //allocator here
50 > IPCStringList;

//make allocator instance:
StringAlloc astr(achar);

55 //construct, pass allocator:
IPCStringList *strlist = segment.construct<IPCStringList>

(”title list”) //name of the object
(astr); //ctor arguments

60 strlist->push_back(*str); //access list

//list�>push_back(”abc”); //failure?!?
strlist->push_back(IPCString(”abc”, achar));

strlist->emplace_back(”abc”, achar); //ok
65

// using scoped allocator:
typedef boost::container::scoped_allocator_adaptor<StringAlloc>

ScopedStringAlloc;

r210 27 Inform GmbH, Aachen

Allocators and Shared Memory Frank Birbacher

typedef list<IPCString, ScopedStringAlloc> ScopedStringList;

70 //make allocator instance:
ScopedStringAlloc ascoped(astr);

//construct, pass allocator:
ScopedStringList* scopedlist = segment.construct<ScopedStringList>

75 (”scoped”) //name of the object
(ascoped); //ctor arguments

scopedlist->emplace_back(*str);

scopedlist->emplace_back(”world”); // works now
80

/* For the future:
typedef std::scoped_allocator_adaptor<StringAlloc> ScopedStringAlloc;
typedef std::list<IPCString, ScopedStringAlloc> ScopedStringList;

85 //make allocator instance:
ScopedStringAlloc ssa(astr);

//construct, pass allocator:
ScopedStringList* ssl = segment.construct<ScopedStringList>

90 (”scoped”) //name of the object
(ssa); //ctor arguments

ssl.emplace_back(”abc”); //works
*/

95 }

r210 28 Inform GmbH, Aachen

	Allocators 03
	Idea
	Definition
	Problems in C++03

	Shared Memory
	What is it?
	Pointers in shared memory
	Boost.Interprocess: The Big Picture
	String in shared memory

	Allocators 11
	What's new in C++11?
	Scoped allocator

	Appendix
	Allocator 03â•ﬂdetails
	std::list 03 using an allocator
	std::list 11 using an allocator
	Propagating allocators 11
	Source code: strings in shared memory

