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WHAT IS SCALABILITY?







WHAT IS (MASSIVE) CONCURRENCY?







WHAT IS HiGH AVAILABILITY?







WHAT IS FAULT TOLERANCE?







\WHAT IS DISTRIBUTION TRANSPARENCY?







Do you need a distnbuted system? Do you need a scalable system? Do you need 3
reliable system? Do you need a faulttolerant system? Do you need @ massively
concurrent system? Do you need a distributed system? Do you need a scalable

YES, PLEASE'!

systen? Do you need a reliable system? Do you need a faulttolerant system? Do
distnbuted system? Do you need a scalable system? Do you need a reliable
system? Do you need a fault-tolerant system? Do you need a massively
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ERLANG

TO THE RESCUE




« (OPEN SOURCE

« (CONCURRENCY-ORIENTED

e LIGHTWEIGHT PROCESSES

o ASYNCHRONOUS MESSAGE PASSING
e SHARE-NOTHING MODEL

« PROCESS LINKING / MONITORING

« SUPERVISION TREES AND RECOVERY STRATEGIES
« TRANSPARENT DISTRIBUTION MODEL
o SOFT-REAL TIME

o LET-IT-FAIL PHILOSOPHY

« HOT-CODE UPGRADES
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WELL, IN FACT YOU NEED MORE.




ERLANG IS JUST
A PROGRAMMING LANGUAGE.




YOU NEED ARCHITECTURE PATTERNS.
YOU NEED MIDDLEWARE.
YOU NEED LIBRARIES.
YOU NEED TOOLS.




You NEep OTP.







\WHAT IS MIDDLEWARE?




DESIGN PATTERNS
FAULT TOLERANCE
DISTRIBUTION
UUPGRADES
PACKAGING
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\WHAT ARE LIBRARIES?




STORAGE

0&M
INTERFACES
COMMUNICATION
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WHAT TooLS?




DEVELOPMENT

TEST FRAMEWORKS
RELEASE & DEPLOYMENT
DEBUGGING & MONITORING
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OPEN SOURCE

OTP 1S

PART OF THE ERLANG DISTRIBUTION




Less Code
Less Bugs
More Solid Code

More Tested Code
More Free Time




BEHAVIOURS




GENERIC

BEHAVIOUR
MODULE

Server

L 4

process

SPECIFIC

CALLBACK
MODULE




Servers

Finite State Machines
Event Handlers
Supervisors
Applications




{request, Pid, Message}

>
Client Server
{reply, Reply}

<

call (Name, Message) ->
Name ! {request, self(), Message},
receive
{reply, Reply} -> Reply
end.

reply(Pid, Reply) ->
Pid ! {reply, Reply}.




{requéreqguéRef, Psd]l fMée¢ssagegsage}

>
Client . ‘ Server
{refdeplReReReply }
<
{r%lw,?m®
‘ Server 2

call (Name, Msg) ->

Name ! {request, { , self()}, Msgqg},
receive {reply, , Reply} -> Reply end.

reply({ , Pid}, Reply) ->
Pid ! {reply, , Reply}.




{request, {Ref, PidA}, Msg}

PidA ‘II’ >

PidB

call (Name, Msg) ->

Name ! {request, {Ref, self()}, Msqg},
receive
{reply, Ref, Reply} ->

Reply;




{'DOWN', Ref, process, PidB, Reason}
{re%pest, {Ref, PidA}, Msg}
PidA ‘II’

reply, Ref, Reply}
PidB

call (Name, Msg) ->
Ref = erlang:monitor (process, Name),
Name ! {request, {Ref, self()}, Msqg},
receive
{reply, Ref, Reply} ->

erlang:demonitor (Ref, ) ,
Reply;
{'DOWN', Ref, process, Name, Reason} ->
{error, no proc}
end.




TIMEOUTS

DEADLOCKS
TRACING

MONITORING
DISTRIBUTION

SUNOIAVHIY







convert (Day) ->
case Day of

monday -> 1;
tuesday -> 2
wednesday -> 3;
thursday -> 4;
friday -> 5;
saturday -> 6;
sunday -> 7;
Other ->

{error, unknown day}
end.




convert (Day)
case Day of
monday
tuesday
wednesd
thursda
friday
saturda
sunday

end.
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ISOLATE THE ERROR!




PROPAGATING EXIT SIGNALS

{'EXIT', PidA, Reason}

PidA PidB

{'EXIT', PidB, Reason}

PidC




TRAPPING AN EXIT SIGNAL

{'EXIT', PidA, Reason}
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PidA
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PidA

Application

WorRers

A\

PidC
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Release

Mongoose
fOIS()m

lager

stdlib

ERTS




AUTOMATIC TAKEOVER AND FAILOVER




{myApp, 2000, {nl@host, {n2@host, n3@host}]}

N2© N3©

Application \ \/
Master ,

n1@host dies Application Masters on failover nodes
Application




{myApp, 2000, {nl@host, {n2@host, n3@host}]}

N2

hﬂ3(z::)
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Application is restarted on n2@host n2@host dies




{myApp, 2000, {nl@host, {n2@host, n3@host}]}

hr1<z::)

n1@host comes back up Application is restarted on n3@host




{myApp, 2000, {nl@host, {n2@host, n3@host}]}

N1 takes over N3







Erlang VM

Scheduler #1

run queue

—

Py

Scheduler #2

S

run queue

| [ migration
logic
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Scheduler #N

run queue
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LIMITATIONS ARE PRESENT AT THREE LEVELS

WP4 Scalable Infrastructure

WP3 SD Erlang Language
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WP2 Virtual Machine
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« PUSH THE RESPONSIBILITY FOR SCALABILITY FROM THE PROGRAMMER TO THE \/M
e ANALYZE PERFORMANCE AND SCALABILITY
« |DENTIFY BOTTLENECKS AND PRIORITIZE CHANGES AND EXTENSIONS

o TACKLE WELL-KNOWN SCALABILITY ISSUES

« ETS TABLES (SHARED GLOBAL DATA STRUCTURE)
» MESSAGE PASSING, COPYING AND FREQUENTLY COMMUNICATING PROCESSES




LANGUAGE

« TWO MAJOR ISSUES
» FULLY CONNECTED CLUSTERS
» EXPLICIT PROCESS PLACEMENT

« SCALABLE DISTRIBUTED (SD) ERLANG
« NODES GROUPING
« NON-TRANSITIVE CONNECTIONS
« |MPLICIT PROCESS PLACEMENT
« PART OF THE STANDARD ERLANG/OTP PACKAGE

» NEW CONCEPTS INTRODUCED
» LOCALITY, AFFINITY AND DISTANCE
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INFRASTRUCTURE

Wombat O0SM

» MIDDLEWARE LAYER
« SET OF ERLANG APPLICATIONS
» CREATE AND MANAGE CLUSTERS OF (HETEROGENEOUS) ERLANG NODES
« APl TO MONITOR AND CONTROL ERLANG DISTRIBUTED SYSTEMS
« EXISTING TRACING/LOGGING/ DEBUGGING TOOLS PLUGGABLE
» BROKER LAYER BETWEEN USERS AND CLOUD PROVIDERS
o AUTO-SCALING
... AND MucH MORE




CONCLUSIONS




Do you need a distnbuted system? Do you need a scalable system? Do you need 3
reliable system? Do you need a faulttolerant system? Do you need @ massively
concurrent system? Do you need a distributed system? Do you need a scalable

USE ERLANG

systen? Do you need a reliable system? Do you need a faulttolerant system? Do
distributed system? Do you need a scalable system? Do you need a reliable
system? Do you need a fault-tolerant system? Do you need a massively




Do you need a distnbuted system? Do you need a scalable system? Do you need 3
reliable system? Do you need a faulttolerant system? Do you need @ massively
concurrent system? Do you need a distributed system? Do you need a scalable

USE ERLANG/QTP

systen? Do you need a reliable system? Do you need a faulttolerant system? Do
distnbuted system? Do you need a scalable system? Do you need a reliable
system? Do you need a fault-tolerant system? Do you need a massively
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