
ERLANG/OTP
presents

FRANCESCO CESARINI

Francesco Cesarini
Erlang Solutions

@FrancescoC
francesco@erlang-solutions.com
www.erlang-solutions.com

WHAT IS SCALABILITY?

WHAT IS (MASSIVE) CONCURRENCY?

WHAT IS HIGH AVAILABILITY?

WHAT IS FAULT TOLERANCE?

WHAT IS DISTRIBUTION TRANSPARENCY?

YES, PLEASE!!!
Do you need a distributed system? Do you need a scalable system? Do you need a
reliable system? Do you need a fault-tolerant system? Do you need a massively
concurrent system? Do you need a distributed system? Do you need a scalable

system? Do you need a reliable system? Do you need a fault-tolerant system? Do
distributed system? Do you need a scalable system? Do you need a reliable
system? Do you need a fault-tolerant system? Do you need a massively

TO THE RESCUE

• OPEN SOURCE

• CONCURRENCY-ORIENTED

• LIGHTWEIGHT PROCESSES

• ASYNCHRONOUS MESSAGE PASSING

• SHARE-NOTHING MODEL

• PROCESS LINKING / MONITORING

• SUPERVISION TREES AND RECOVERY STRATEGIES

• TRANSPARENT DISTRIBUTION MODEL

• SOFT-REAL TIME

• LET-IT-FAIL PHILOSOPHY

• HOT-CODE UPGRADES

W
HAT IS ERLANG

WELL, IN FACT YOU NEED MORE.

ERLANG IS JUST
A PROGRAMMING LANGUAGE.

YOU NEED ARCHITECTURE PATTERNS.
YOU NEED MIDDLEWARE.

YOU NEED LIBRARIES.
YOU NEED TOOLS.

YOU NEED OTP.

SOME TEXT

WHAT IS MIDDLEWARE?

MIDDLEW
ARE

DESIGN PATTERNS

FAULT TOLERANCE

DISTRIBUTION

UPGRADES

PACKAGING

WHAT ARE LIBRARIES?

LIBRARIES

STORAGE

O&M
INTERFACES

COMMUNICATION

WHAT TOOLS?

OTP TOOLS

DEVELOPMENT

TEST FRAMEWORKS

RELEASE & DEPLOYMENT

DEBUGGING & MONITORING

PART OF THE ERLANG DISTRIBUTION

OPEN SOURCE

OTP IS

OTP
Servers
Finite State Machines
Event Handlers
Supervisors
Applications

Less Code
Less Bugs

More Solid Code
More Tested Code

More Free Time

BEHAVIOURS

SPECIFIC
CALLBACK
MODULE

GENERIC
BEHAVIOUR

MODULE

Server

process

OTP
Servers
Finite State Machines
Event Handlers
Supervisors
Applications

Less Code
Less Bugs

More Solid Code
More Tested Code

More Free Time

call(Name, Message) ->
 Name ! {request, self(), Message},
 receive
 {reply, Reply} -> Reply
 end.

reply(Pid, Reply) ->
 Pid ! {reply, Reply}.

Client Server

{request, Pid, Message}

{reply, Reply}

Client Server

{request, Pid, Message}

{reply, Reply}

Server 2

{reply, Reply}

call(Name, Msg) ->
 Ref = make_ref(),
 Name ! {request, {Ref, self()}, Msg},
 receive {reply, Ref, Reply} -> Reply end.

reply({Ref, Pid}, Reply) ->
 Pid ! {reply, Ref, Reply}.

{request, {Ref, self()}, Message}

{reply, Ref, Reply}

{reply, ???, Reply}

PidA PidB

{request, {Ref, PidA}, Msg}

call(Name, Msg) ->
 Ref = erlang:monitor(process, Name),
 Name ! {request, {Ref, self()}, Msg},
 receive
! {reply, Ref, Reply} ->
! erlang:demonitor(Ref),
! Reply;
! {'DOWN', Ref, process, _Name, _Reason} ->
! {error, no_proc}
 end.

PidA PidB

{request, {Ref, PidA}, Msg}

call(Name, Msg) ->
 Ref = erlang:monitor(process, Name),
 Name ! {request, {Ref, self()}, Msg},
 receive
! {reply, Ref, Reply} ->
! erlang:demonitor(Ref, [flush]),
! Reply;
! {'DOWN', Ref, process, _Name, _Reason} ->
! {error, no_proc}
 end.

{reply, Ref, Reply}

{'DOWN', Ref, process, PidB, Reason}

BEHAVIOURS

TIMEOUTS

DEADLOCKS
TRACING

MONITORING

DISTRIBUTION

Your Heading

Let It Fail
convert(Day) ->
 case Day of
 monday -> 1;
 tuesday -> 2;
 wednesday -> 3;
 thursday -> 4;
 friday -> 5;
 saturday -> 6;
 sunday -> 7;
 Other ->
 {error, unknown_day}
 end.

Let It Fail
convert(Day) ->
 case Day of
 monday -> 1;
 tuesday -> 2;
 wednesday -> 3;
 thursday -> 4;
 friday -> 5;
 saturday -> 6;
 sunday -> 7

 end.

ISOLATE THE ERROR!

PROPAGATING EXIT SIGNALS
Exit Signals

PidA PidB

{'EXIT', PidA, Reason}

PidC

{'EXIT', PidB, Reason}

Trap Exit
TRAPPING AN EXIT SIGNAL

PidA

{'EXIT', PidA, Reason}

PidC

PidB

Supervisors

PidA

PidC

PidBSupervisor

Workers

Application

Releases
Release

Mongoose

IM folsom lager

snmp mnesia stdlib

SASL kernel ERTS

AUTOMATIC TAKEOVER AND FAILOVER

N1

{myApp, 2000, {n1@host, {n2@host, n3@host}]}

N2 N3

Application
Master

Application

n1@host dies Application Masters on failover nodes

N2 N3

n2@host diesApplication is restarted on n2@host

{myApp, 2000, {n1@host, {n2@host, n3@host}]}

N1 N3

n1@host comes back up Application is restarted on n3@host

{myApp, 2000, {n1@host, {n2@host, n3@host}]}

N1 N3

N1 takes over N3

{myApp, 2000, {n1@host, {n2@host, n3@host}]}

RELEASE STATEMENT OF AIMS

“To scale the radical concurrency-oriented
programming paradigm to build reliable
general-purpose software, such as server-
based systems, on massively parallel machines
(10^5 cores).”

The Runtime Queues
Erlang VM

Scheduler #1

Scheduler #2

run queue

Scheduler #2

Scheduler #N

run queue

run queue

migration
logic

migration
logic

WP4 Scalable Infrastructure

WP3 SD Erlang Language

WP2 Virtual Machine

W
P5 Tools

W
P6 C

ase Studies

LIMITATIONS ARE PRESENT AT THREE LEVELS

• PUSH THE RESPONSIBILITY FOR SCALABILITY FROM THE PROGRAMMER TO THE VM

• ANALYZE PERFORMANCE AND SCALABILITY

• IDENTIFY BOTTLENECKS AND PRIORITIZE CHANGES AND EXTENSIONS

• TACKLE WELL-KNOWN SCALABILITY ISSUES
• ETS TABLES (SHARED GLOBAL DATA STRUCTURE)
• MESSAGE PASSING, COPYING AND FREQUENTLY COMMUNICATING PROCESSES

VM LANGUAGE INFRASTRUCTURE

VM LANGUAGE INFRASTRUCTURE

• TWO MAJOR ISSUES
• FULLY CONNECTED CLUSTERS

• EXPLICIT PROCESS PLACEMENT

• SCALABLE DISTRIBUTED (SD) ERLANG
• NODES GROUPING

• NON-TRANSITIVE CONNECTIONS

• IMPLICIT PROCESS PLACEMENT

• PART OF THE STANDARD ERLANG/OTP PACKAGE

• NEW CONCEPTS INTRODUCED
• LOCALITY, AFFINITY AND DISTANCE

• MIDDLEWARE LAYER

• SET OF ERLANG APPLICATIONS

• CREATE AND MANAGE CLUSTERS OF (HETEROGENEOUS) ERLANG NODES

• API TO MONITOR AND CONTROL ERLANG DISTRIBUTED SYSTEMS

• EXISTING TRACING/LOGGING/DEBUGGING TOOLS PLUGGABLE

• BROKER LAYER BETWEEN USERS AND CLOUD PROVIDERS

• AUTO-SCALING

VM LANGUAGE INFRASTRUCTURE

Wombat O&M

... AND MUCH MORE

CONCLUSIONS

USE ERLANG

Do you need a distributed system? Do you need a scalable system? Do you need a
reliable system? Do you need a fault-tolerant system? Do you need a massively
concurrent system? Do you need a distributed system? Do you need a scalable

system? Do you need a reliable system? Do you need a fault-tolerant system? Do
distributed system? Do you need a scalable system? Do you need a reliable
system? Do you need a fault-tolerant system? Do you need a massively

USE ERLANG/OTP

Do you need a distributed system? Do you need a scalable system? Do you need a
reliable system? Do you need a fault-tolerant system? Do you need a massively
concurrent system? Do you need a distributed system? Do you need a scalable

system? Do you need a reliable system? Do you need a fault-tolerant system? Do
distributed system? Do you need a scalable system? Do you need a reliable
system? Do you need a fault-tolerant system? Do you need a massively

@ fr a n ce s co C

QUESTIONS?

