Erlang Solutions

@Francesco(
francesco@erlang-solutions.com
www.erlang-solutions.com

SOLUTIONS

SOLUTIONS

WHAT IS SCALABILITY?

WHAT IS (MASSIVE) CONCURRENCY?

WHAT IS HiGH AVAILABILITY?

WHAT IS FAULT TOLERANCE?

\WHAT IS DISTRIBUTION TRANSPARENCY?

Do you need a distnbuted system? Do you need a scalable system? Do you need 3
reliable system? Do you need a faulttolerant system? Do you need @ massively
concurrent system? Do you need a distributed system? Do you need a scalable

YES, PLEASE'!

systen? Do you need a reliable system? Do you need a faulttolerant system? Do
distnbuted system? Do you need a scalable system? Do you need a reliable
system? Do you need a fault-tolerant system? Do you need a massively

| v

ERLANG

TO THE RESCUE

« (OPEN SOURCE

« (CONCURRENCY-ORIENTED

e LIGHTWEIGHT PROCESSES

o ASYNCHRONOUS MESSAGE PASSING
e SHARE-NOTHING MODEL

« PROCESS LINKING / MONITORING

« SUPERVISION TREES AND RECOVERY STRATEGIES
« TRANSPARENT DISTRIBUTION MODEL
o SOFT-REAL TIME

o LET-IT-FAIL PHILOSOPHY

« HOT-CODE UPGRADES

INV1d3 SI LIVHM

WELL, IN FACT YOU NEED MORE.

ERLANG IS JUST
A PROGRAMMING LANGUAGE.

YOU NEED ARCHITECTURE PATTERNS.
YOU NEED MIDDLEWARE.
YOU NEED LIBRARIES.
YOU NEED TOOLS.

You NEep OTP.

\WHAT IS MIDDLEWARE?

DESIGN PATTERNS
FAULT TOLERANCE
DISTRIBUTION
UUPGRADES
PACKAGING

JVYMI10dIN

\WHAT ARE LIBRARIES?

STORAGE

0&M
INTERFACES
COMMUNICATION

114Vl

WHAT TooLS?

DEVELOPMENT

TEST FRAMEWORKS
RELEASE & DEPLOYMENT
DEBUGGING & MONITORING

$1001 410

OPEN SOURCE

OTP 1S

PART OF THE ERLANG DISTRIBUTION

Less Code
Less Bugs
More Solid Code

More Tested Code
More Free Time

BEHAVIOURS

GENERIC

BEHAVIOUR
MODULE

Server

L 4

process

SPECIFIC

CALLBACK
MODULE

Servers

Finite State Machines
Event Handlers
Supervisors
Applications

{request, Pid, Message}

>
Client Server
{reply, Reply}

<

call (Name, Message) ->
Name ! {request, self(), Message},
receive
{reply, Reply} -> Reply
end.

reply(Pid, Reply) ->
Pid ! {reply, Reply}.

{requéreqguéRef, Psd]l fMée¢ssagegsage}

>
Client . ‘ Server
{refdeplReReReply }
<
{r%lw,?m®
‘ Server 2

call (Name, Msg) ->

Name ! {request, { , self()}, Msgqg},
receive {reply, , Reply} -> Reply end.

reply({ , Pid}, Reply) ->
Pid ! {reply, , Reply}.

{request, {Ref, PidA}, Msg}

PidA ‘II’ >

PidB

call (Name, Msg) ->

Name ! {request, {Ref, self()}, Msqg},
receive
{reply, Ref, Reply} ->

Reply;

{'DOWN', Ref, process, PidB, Reason}
{re%pest, {Ref, PidA}, Msg}
PidA ‘II’

reply, Ref, Reply}
PidB

call (Name, Msg) ->
Ref = erlang:monitor (process, Name),
Name ! {request, {Ref, self()}, Msqg},
receive
{reply, Ref, Reply} ->

erlang:demonitor (Ref,) ,
Reply;
{'DOWN', Ref, process, Name, Reason} ->
{error, no proc}
end.

TIMEOUTS

DEADLOCKS
TRACING

MONITORING
DISTRIBUTION

SUNOIAVHIY

convert (Day) ->
case Day of

monday -> 1;
tuesday -> 2
wednesday -> 3;
thursday -> 4;
friday -> 5;
saturday -> 6;
sunday -> 7;
Other ->

{error, unknown day}
end.

convert (Day)
case Day of
monday
tuesday
wednesd
thursda
friday
saturda
sunday

end.

->

ay
y

y

we we

[] we

we

e

N O O s W DN B
b |

ISOLATE THE ERROR!

PROPAGATING EXIT SIGNALS

{'EXIT', PidA, Reason}

PidA PidB

{'EXIT', PidB, Reason}

PidC

TRAPPING AN EXIT SIGNAL

{'EXIT', PidA, Reason}

S e R R LT > ‘ PidB

PidA

‘ i

PidA

Application

WorRers

A\

PidC

(

Release

Mongoose
fOIS()m

lager

stdlib

ERTS

AUTOMATIC TAKEOVER AND FAILOVER

{myApp, 2000, {nl@host, {n2@host, n3@host}]}

N2© N3©

Application \ \/
Master ,

n1@host dies Application Masters on failover nodes
Application

{myApp, 2000, {nl@host, {n2@host, n3@host}]}

N2

hﬂ3(z::)

A

/)

Application is restarted on n2@host n2@host dies

{myApp, 2000, {nl@host, {n2@host, n3@host}]}

hr1<z::)

n1@host comes back up Application is restarted on n3@host

{myApp, 2000, {nl@host, {n2@host, n3@host}]}

N1 takes over N3

Erlang VM

Scheduler #1

run queue

—

Py

Scheduler #2

S

run queue

| [migration
logic

7

— <«
_J

Scheduler #N

run queue

%~ €DF S
ERICSSON SOLUTIONS
HERIOT -3& -;j. University of

UNIVERSITET

LIMITATIONS ARE PRESENT AT THREE LEVELS

WP4 Scalable Infrastructure

WP3 SD Erlang Language

S|00L GdM

S —————— |
WP2 Virtual Machine

l SaIpnis 8se) 9dM

« PUSH THE RESPONSIBILITY FOR SCALABILITY FROM THE PROGRAMMER TO THE \/M
e ANALYZE PERFORMANCE AND SCALABILITY
« |DENTIFY BOTTLENECKS AND PRIORITIZE CHANGES AND EXTENSIONS

o TACKLE WELL-KNOWN SCALABILITY ISSUES

« ETS TABLES (SHARED GLOBAL DATA STRUCTURE)
» MESSAGE PASSING, COPYING AND FREQUENTLY COMMUNICATING PROCESSES

LANGUAGE

« TWO MAJOR ISSUES
» FULLY CONNECTED CLUSTERS
» EXPLICIT PROCESS PLACEMENT

« SCALABLE DISTRIBUTED (SD) ERLANG
« NODES GROUPING
« NON-TRANSITIVE CONNECTIONS
« |MPLICIT PROCESS PLACEMENT
« PART OF THE STANDARD ERLANG/OTP PACKAGE

» NEW CONCEPTS INTRODUCED
» LOCALITY, AFFINITY AND DISTANCE

[
"

\

R

A

G1

INFRASTRUCTURE

Wombat O0SM

» MIDDLEWARE LAYER
« SET OF ERLANG APPLICATIONS
» CREATE AND MANAGE CLUSTERS OF (HETEROGENEOUS) ERLANG NODES
« APl TO MONITOR AND CONTROL ERLANG DISTRIBUTED SYSTEMS
« EXISTING TRACING/LOGGING/ DEBUGGING TOOLS PLUGGABLE
» BROKER LAYER BETWEEN USERS AND CLOUD PROVIDERS
o AUTO-SCALING
... AND MucH MORE

CONCLUSIONS

Do you need a distnbuted system? Do you need a scalable system? Do you need 3
reliable system? Do you need a faulttolerant system? Do you need @ massively
concurrent system? Do you need a distributed system? Do you need a scalable

USE ERLANG

systen? Do you need a reliable system? Do you need a faulttolerant system? Do
distributed system? Do you need a scalable system? Do you need a reliable
system? Do you need a fault-tolerant system? Do you need a massively

Do you need a distnbuted system? Do you need a scalable system? Do you need 3
reliable system? Do you need a faulttolerant system? Do you need @ massively
concurrent system? Do you need a distributed system? Do you need a scalable

USE ERLANG/QTP

systen? Do you need a reliable system? Do you need a faulttolerant system? Do
distnbuted system? Do you need a scalable system? Do you need a reliable
system? Do you need a fault-tolerant system? Do you need a massively

QUESTIONS?

@francesco(

