
How To Write A
Testable State Machine

Matthew Jones

ACCU Conference, 26th April 2012

State Machines

• Describe your ‘nightmare’ state machine

• 1000 line file

• Mother of all switch() statements

• 10s of line per case

• Nested switch()es

• Freely calling other code to implement
the state

• What is the cyclometric complexity?

• Often an entire thread’s code in one place

• Classic testing problem

Writing a Testable State Machine 2

Example

Writing a Testable State Machine 3

• http://en.wikipedia.or
g/wiki/Event_driven_f
inite_state_machine

• Trivially simple

• Still has dependency
on “application”

http://en.wikipedia.org/wiki/Event_driven_finite_state_machine
http://en.wikipedia.org/wiki/Event_driven_finite_state_machine
http://en.wikipedia.org/wiki/Event_driven_finite_state_machine

The TCP State Machine

Writing a Testable State Machine 4

Linux TCP State Machine

• tcp_states.h

• State logic scattered over
dozens of large files in
/net

• State changes often
‘incidental’ in other code.

• Completely untestable

Writing a Testable State Machine 5

The Problem

• Not separating concerns: include code in SM that
implements the state.

• Seemingly trivial, but introduces dependency(s) on the
application

• Mixes state logic with application logic.

• Testing
• Manual? Run application, stimulate it, observe outcome.

Infer state machine operation

• printf()

• Stubbing & mocking to get a test suite to build tedious

• Too hard pressure not to.

Writing a Testable State Machine 6

So ...

How should we go about writing
a state machine from scratch so

that we can test it easily?

Writing a Testable State Machine 7

What is a State Machine?

• “Code that manages the state of something,
responding to external events, and translating
them into actions to be implemented by the
system“ ©me.

• Transitions from one state to another in response
to events.

• Transitions normally expected to cause actions,
but aren't a requirement.

• Details of actions are NOT part of the state
machine.

Writing a Testable State Machine 8

The Premise
• SM is simply a way of turning events into actions.

• Any further details should be in the application.

Writing a Testable State Machine 9

• Maps nicely to an OO approach:
• An events interface describing the

events the SM will respond to.
• An actions interface describing

the actions the SM will
output to the system.

• SM implements events.
• Application implements actions.

Making A Start

• Start from state diagram.

• Identify inputs and
outputs:

• Inputs events

• Outputs actions

Writing a Testable State Machine 10

Events and Actions

Writing a Testable State Machine 11

Writing Some Tests

• Given the events we know
the FSM can accept, we can
write our first test to fire
off an event and expect the
action.

• Then another.
• And another.
• Soon we should have a test

for every transition on the
diagram.

• See worked example later

Writing a Testable State Machine 12

Writing Some Tests

• To add real world relevance to the work, add
use case tests.

• May have implemented the diagram perfectly,
but unless we put it through its paces it might
not be apparent that the diagram is flawed.

• Mistake in example :-)

Writing a Testable State Machine 13

Approaches
• Language, application, company, project

specific.

• Derive test actions from actions interface and
inject (i.e. Test doubles)

• Derive test implementation of SM to allow
test code to sense transitions and actions

• Mock the actions interface.

• If non-00, stub action functions

Writing a Testable State Machine 14

Method: Transition Tests
• Bootstrap the SM, and test harness, into

existence:

• Write a few transition tests: look for some
expected actions and resulting states

• Get code & test framework into place and settled

• Once the state machine is starting to grow, move
to test vectors to simplify the tests, and move
faster:

• [starting state, event(s), end state, expected action(s)]

Writing a Testable State Machine 15

Example Test Vector

Writing a Testable State Machine 16

Method: Use Case Tests
• Add use case tests: inject >1 events, driving the

SM round multiple transitions.
• Use cases should be good & bad, realistic &

unlikely.
• Use cases apply the SM to the real world

application: they are acceptance tests (GOOS).
• Each failing acceptance test lead us to TDD the

requisite transitions:
• Add the necessary single transition test vectors, and

code the missing transitions / actions.

• Rinse and repeat

Writing a Testable State Machine 17

Example Test Vectors

Writing a Testable State Machine 18

Code Examples

Writing a Testable State Machine 19

Events and Actions

Writing a Testable State Machine 20

One State & Transition

Writing a Testable State Machine 21

Two States & Transitions

Writing a Testable State Machine 22

Add Third Transition & State

Writing a Testable State Machine 23

Introduce Test Vectors

Writing a Testable State Machine 24

Add Actions To Test Vector

Writing a Testable State Machine 25

Merge Existing Tests Into One

Writing a Testable State Machine 26

(Reminder)

Writing a Testable State Machine 27

Add More Transitions And States

Writing a Testable State Machine 28

Add Self Transitions
For Closed

Writing a Testable State Machine 29

Add Some Use Case Tests

Writing a Testable State Machine 30

No changes to SM code

Add Use Case for ESTABLISHED CLOSED

Writing a Testable State Machine 31

Finished Code

Writing a Testable State Machine 32

Conclusions

• If we are growing the code in response to the
tests, what does it look like?
• Who cares? It works.

• TDD: it should be pretty simple

• GoF OO state machine pattern is unlikely to occur
spontaneously.

• The same goes for hierarchical states, even if shown
on the state diagram.

• But once tests are in place, we are free to refactor to
this if we want.

Writing a Testable State Machine 33

Conclusions
• Maintain separation of concerns (app/SM)

• Test for every event in every state to prevent
surprises & prove completeness

• Jump between acceptance tests (use case)
and unit tests (transitions, actions)

• Use case tests can drive design in absence of
state diagram

• Given a state transition diagram we can
test the SM into existence and prove it
completely

Writing a Testable State Machine 34

Questions ?

matthew.jones@garmin.com

Writing a Testable State Machine 35

