

C++11 Allocators

Jonathan Wakely ACCU 2012

● Introduction
● Overview of pre-2011 allocators
● Problems with C++03 allocators
● What's new in 2011
● What changed for users
● What changed for implementors
● Problems with C++11 allocators

What this talk isn't

● Presented by an expert

● A tutorial on writing allocators

● One of the new C++11 features everyone
should use or know about

template<typename T,
 typename Alloc = allocator<T> >
 class vector;

Using Allocators

MyAllocator<int> a(1024);
vector< int, MyAllocator<int> > v2(a);

● Primarily an implementation detail for containers,
users rarely need to work with allocators directly

vector< int, MyAllocator<int> > v1;

vector<int> v;

Allocators before 1998

● Allocators were invented by Alex Stepanov as
part of the STL

● STL algorithms use iterators to traverse ranges
without knowing details of the structure

● STL containers use allocators to manage and
manipulate memory without knowing details of
the memory model or allocation policy

● Containers need to deal with uninitialized
memory and only construct objects in that raw
memory on demand

● Containers need a lower-level interface than new
and delete, closer to malloc() and free()

● Allocators separate memory allocation from
construction, and destruction from deallocation

● Instead of duplicating the logic in every
container, the task of creating and destroying
objects of type T is done by an allocator type
such as allocator<T>

Stepanov, Lee “The Standard Template Library.” 1994,
http://www.stepanovpapers.com/Stepanov-The_Standard_Template_Library-1994.pdf

● The STL evolved to classes for memory
allocation instead of functions

● This allows customising memory allocation by
using different allocator types as a template
parameter
template<class T, class Alloc = allocator<T> >
 struct vector;

● Allocators were meant to encapsulate all the
information about the platform's memory model
e.g. segmented-memory on early Intel chips
could be handled by a custom Alloc::pointer
type

● The C++ standard states the requirements for
allocators (in C++03 see 20.1.5 [lib.allocator.requirements])

Allocators in C++03

● Requirements include nested types that must
be defined and expressions that must be valid

e.g. given an allocator, a, of type A, the
expression a.allocate(n) returns an object of
type A::pointer which refers to uninitialized
memory suitable for n objects of type
A::value_type

● The standard also defines the default allocator,
std::allocator, as a model of that allocator
concept (in C++03 see 20.4.1 [lib.default.allocator])

● Looking at the default allocator is a good way to
understand the C++03 allocator requirements

● Several nested types in std::allocator<T>
template<typename T>
 class allocator
 {
 public:
 typedef size_t size_type;
 typedef ptrdiff_t difference_type;
 typedef T* pointer;
 typedef const T* const_pointer;
 typedef T& reference;
 typedef const T& const_reference;
 typedef T value_type;

 template <class U> struct rebind { typedef allocator<U> other;
};

Aside 1 - Template Typedefs ... Not

● typedef declares an alias for an existing type

template<typename T>
 struct not_so_smart_ptr
 {
 typedef std::auto_ptr<T> type;
 };
not_so_smart_ptr<int>::type p(new int);

typedef Jonathan Jon;

template<typename T> struct allocator {
 template<typename U> struct rebind {
 typedef allocator<U> other;
 };
};
allocator<int>::rebind<char>::other char_alloc;

allocator();

allocator(const allocator&);

template<class U>
 allocator(const allocator<U>&);

~allocator();

pointer allocate(size_type n_objs,
 allocator<void>::const_pointer hint = 0);

void deallocate(pointer p, size_type n_objs);

size_type max_size() const;

void construct(pointer p, const T& val);

void destroy(pointer p);

pointer address(reference r) const;

const_pointer address(const_reference r) const;

// new (p) T(val)

// p->~T()

template<>
class allocator<void>
{
public:
 typedef void* pointer;
 typedef const void* const_pointer;
 typedef void value_type;
 template<class U> struct rebind{ typedef allocator<U> other; };
};

template<typename T>
 bool operator==(const allocator<T>&, const allocator<T>&);
template<typename T>
 bool operator!=(const allocator<T>&, const allocator<T>&);

● std::allocator instances are stateless and so
always compare equal

● Allocator equality implies interchangeability
i.e. the instances can free each other's memory

● allocator<void>::pointer can be used without
instantiating allocator<void>::reference

std::vector<T, A> v(a);

m_alloc = a; // A
m_data = A::pointer(); // A::pointer
m_capacity = m_size = 0; // A::size_type

v.reserve(4);

m_data = m_alloc.allocate(n);
m_capacity = n;

v.resize(3, t);

for(int i = 0; i < n; ++i, ++m_size)
 m_alloc.construct(m_data[m_size], t);

typedef typename A::template rebind<Node>::other A2;
A2 a2(m_alloc);
typename A2::pointer p = a2.allocate(1);
try {
 a2.construct(p, Node()); // assume no-throw
 m_alloc.construct(&p->data, t);
 m_append_node(p);
} catch (...) {
 a2.destroy(p, 1);
 a2.deallocate(p, 1);
 throw;
}

std::list<T, A> l(a);

m_alloc = a;

l.push_back(t);

What doesn't work well
● Awkward, verbose syntax

map<int, double, less<int>, allocator<pair<const int, double> > >

● Could have used template template parameters
template<class T, template<class> class Alloc> class vector { };

template<class T> class allocator { };

list<int, allocator> l; // instantiates allocator<int>
 // and allocator<Node> as needed

● As well as the usual sprinkling of typename, every
rebind needs the template keyword
typedef typename A::template rebind<Node>::other A2;

● Many interesting use cases for allocators
require support for stateful allocators that are
not interchangeable

● The limitations on pointer and the other nested
types rule out using them to support exotic
memory models

● Might want different allocator instances to
allocate from specific pools/arenas to control
locality or varying lifetimes
e.g. a web server might have a pool for global data, another
pool for data that persist longer between requests, and short-
lived pools used for single requests

● Such allocators need to maintain state and
instances using different pools have different
identities

● If containers assume all instances of an
allocator type are equivalent there's no
guarantee that identity will be preserved

● Might want different allocator instances to
allocate from specific pools/arenas to control
locality or varying lifetimes
e.g. a web server might have a pool for global data, another
pool for data that persist longer between requests, and short-
lived pools used for single requests

Scoped Allocators

● Consider an allocator that allocates from a
region of shared memory accessible from
multiple processes

● It needs to be stateful, to store a handle to the
shared memory region it's using

● It needs to use a custom pointer type that uses an
offset into the shared memory region, rather than
absolute address

● (Already deep into implementation-defined territory)

● For the container to be accessible in other
processes attached to the same shared
memory, the container itself and all its elements
and any memory they use must come from the
same shared memory region

● If the elements use different allocator types, or
just unequal instances of the same type, the
other process will not be able to use them

● To make this work it's necessary to use the
same allocator for the container, its children, its
children's children and so on

● This requires that every element can be
constructed with an allocator argument which it
uses for its own memory allocation and which it
then passes to every successive level of object
in the structure

● Must be very careful to ensure objects use same
allocator as the container you're adding them to

typedef ShmemAllocator<char> AC;
typedef basic_string<char, char_traits<char>, AC>
 String;
typedef ShmemAllocator<String> AS;
typedef vector<String, AS> Vec;

AC a1(shm_key1);
String s1(“hello”, a1);
AS a2(shm_key2);
Vec v(a2);

v.push_back(“bar”); // v[0] uses AC() !!
v.push_back(s1); // v[1] uses a1 !!
v.push_back(String(s1.c_str(), v.get_allocator()));

What changed in 2011?

● Different allocator requirements
● std::allocator_traits provides all the

boilerplate
● A container's allocator is not fixed at

construction
● The scoped allocator model is not fraught with

danger

template<typename T,
 typename Alloc = allocator<T>>
 class vector;

Using Allocators in 2012

MyAllocator<int> a{1024};
vector<int, MyAllocator<int>> v2{a};

typedef scoped_allocator_adaptor<MyAllocator<int>>
 SA;
vector<vector<int, MyAllocator<int>>, SA> v3;

vector<int, MyAllocator<int>> v1;

vector<int> v;

C++11 Allocator Requirements

● Several new allocator requirements (in C++11 see
17.6.3.5 [allocator.requirements])

● Must be possible to convert pointer to
void_pointer via static_cast and vice versa

● construct() and destroy() take raw pointers not
pointer

● construct(T*, Args&&...) is a variadic function
template supporting perfect forwarding

● No longer require A::reference and
A::const_reference

C++11 Allocator Requirements

● New function
select_on_container_copy_construction()

● Three trait types which must be either
std::true_type or std::false_type

● propagate_on_container_copy_assignment

● propagate_on_container_move_assignment

● propagate_on_container_swap

● I refer to these as POCCA, POCMA and POCS
● These tell containers what to do with their

allocators when performing the corresponding
operations

Minimal Allocator Interface
template<typename T>
 struct Alloc
 {
 Alloc();

 template<typename U>
 Alloc(const Alloc<U>&);

 typename T value_type;

 T* allocate(std::size_t n);
 void deallocate(T*, std::size_t);
 };

template<typename T>
 bool operator==(const Alloc<T>&, const Alloc<T>&);
template<typename T>
 bool operator!=(const Alloc<T>&, const Alloc<T>&);

Pointer Traits

● C++11 adds the std::pointer_traits utility to
describe properties of pointer-like types

● Used to obtain the pointee type
 e.g. given T* obtain T

● Transform a type “pointer to A” to type “pointer
to B”
 e.g. shmem_ptr<int> to shmem_ptr<const int>
 shmem_ptr<int> to shmem_ptr<char>

template<class Ptr>
 struct pointer_traits
 {
 typedef Ptr pointer;
 typedef magic element_type;
 typedef magic difference_type;
 template<class U> using rebind = magic;

 static pointer pointer_to(magic);
 };

template<typename T>
 struct pointer_traits<T*>
 {
 typedef T* pointer;
 typedef T element_type;
 typedef ptrdiff_t difference_type;
 template<typename U> using rebind = U*;

 static pointer pointer_to(magic) noexcept;
 };

Aside 2 - Alias Declarations

● C++11 adds a new way to declare a typedef

template<typename T>
 using smap = std::map<std::string, T>;

smap<int> nums; // map<string, int>
smap<string> names; // map<string, string>

using Jon = Jonathan; // typedef Jonathan Jon;

template<int N>
 using cbuf = std::array<char, N>;

cbuf<4> currency{ “USD” }; // array<char, 4>

template<typename T>
 using ptr = std::unique_ptr<T>;

● pointer_traits<Ptr>::element_type is an alias for
● Ptr::element_type if that type exists, or
● T if Ptr is an instantiation like SomePtr<T,Args...>

template<typename T>
 static true_type has_et(typename
T::element_type*);
template<typename T>
 static false_type has_et(...);

template<typename>
 struct get_et;
template<template<class T, class... Args> class P>
 struct get_et<P<T, Args...>>
 { typedef T type; };

using element_type = typename
 conditional<decltype(has_et<Ptr>(0))::value,
 typename Ptr::element_type,
 typename
get_et<Ptr>::type>::type;

● pointer_traits<Ptr>::difference_type is an alias
for

● Ptr::difference_type if that type exists, or
● std::ptrdiff_t

● pointer_traits<Ptr>::rebind<U> is an alias for
● Ptr::rebind<U> if that type exists, or
● SomePtr<U,Args...> if Ptr is an instantiation like
SomePtr<T,Args...>

● pointer_traits::pointer_to(element_type& ref)
returns a pointer to its argument by calling
Ptr::pointer_to(ref) or std::addressof(ref)
● Not callable when element_type is void

Allocator Traits

● The new class template std::allocator_traits
provides all the boilerplate that used to be
needed by user-defined allocators

● The default definitions provided by the traits
class allows C++03 allocators to work
unchanged in containers that use the C++11
allocator model

● e.g. containers can use variadic
 construct(p, std::forward<Args>(args)...) to
initialize elements even if the allocator only
provides construct(pointer, const T&)

template<typename Alloc>
 struct allocator_traits
 {
 typedef typename Alloc::value_type value_type;

 template<typename T>
 using rebind_alloc = ...; // Alloc::rebind<T>::other
 // or if Alloc is A<X,...>
 // then A<T,...>
 template<typename T>
 using rebind_traits
 = allocator_traits<rebind_alloc<T>>;

 typedef ... pointer; // either Alloc::pointer
 // or value_type*
 typedef ... const_pointer; // Alloc::const_pointer or
 // pointer_traits<pointer>::rebind<const value_type>

 typedef ... propagate_on_container_copy_assignment;
 typedef ... propagate_on_container_move_assignment;
 typedef ... propagate_on_container_swap;

Scoped Allocator Adaptor

● Class template std::scoped_allocator_adaptor is
provided to adapt existing allocator types so
that the parent's allocator will be automatically
passed to a child object's constructor if the child
type supports it

Scoped Allocator Adaptor

typedef ShmemAllocator<int> ShAlloc;
typedef scoped_allocator_adaptor<ShAlloc> ScShA;
vector<vector<int, ShAlloc>, ScShA> v3;

● When the container calls
scoped_allocator_adaptor<A>::construct(args) to
construct an element the adaptor detects
whether the element type can be constructed
with an allocator of type A and calls one of:

● allocator_traits<A>::construct(std::allocator_arg_t,
 alloc, args)

● allocator_traits<A>::construct(args, alloc)

● allocator_traits<A>::construct(args)

● Elements automatically use the same allocator as the
container you're adding them to

typedef ShmemAllocator<char> AC;
typedef basic_string<char, char_traits<char>, AC>
 String;
typedef ShmemAllocator<String> AS;
typedef scoped_allocator_adaptor<AS> SAS;
typedef vector<String, SAS> Vec;

AC a1(shm_key1);
String s1(“hello”, a1);
SAS a2(shm_key2);
Vec v(a2);

v.push_back(“bar”); // v[0] uses a2
v.push_back(s1); // v[1] uses a2

Scoped Allocator Adaptor

● Another trait, std::uses_allocator<T, Alloc>,
detects whether the nested type
T::allocator_type exists and whether that type
can be constructed from an object of type Alloc

● New “allocator-extended” copy/move
constructors are added to many types so they
can be passed an allocator when copied/moved

● To say your own type uses-allocator provide
appropriate constructors and either define a
nested allocator_type member or specialize (or
partially specialize) std::uses_allocator trait

What changed for users

● Easier to define allocators

● Stateful allocators are well-defined and fully
supported by containers

● Possible to swap containers with unequal
allocators (but might take linear time or throw)

● Might lose no-throw guarantees on some
container operations (depending on quality of
implementation)

● Safe and fairly simple to use scoped allocators

What changed for implementors

● All containers and several other types gained
new “allocator-extended” constructors

● Containers must be updated to do all allocator
operations via allocator_traits.

● Containers are required to support non-equal
allocators (although many did so already)

● Container implementations are significantly
more complicated by the propagation traits
(POCCA, POCMA and POCS)

typedef typename A::template rebind<Node>::other A2;
A2 a2(m_alloc);
typename A2::pointer p = a2.allocate(1);
try {
 a2.construct(p, Node());
 m_alloc.construct(&p->data, t);
 m_append_node(p);
} catch (...) {
 a2.deallocate(p, 1);
 throw;
}

typedef allocator_traits<A> Atr;
typedef typename ATr::template rebind_traits<Node> ATr2;
typename ATr2::allocator_type a2(m_alloc);
typename ATr2::pointer p = ATr2::allocate(a2, 1);
Node* p2 = nullptr;
try {
 p2 = new (std::addressof(*p)) Node();
 ATr::construct(m_alloc, &p->data, t);
 m_append_node(p);
} catch (...) {
 if (p2) p2->~Node();
 ATr2::deallocate(a2, p, 1);
 throw;
}

Allocator propagation

● In C++03 copying a container always copied its
allocator.

● If the allocator being copied uses a buffer on
the stack or another non-copyable or short-lived
source of memory it would be a bad idea to
copy the allocator into other containers that will
outlive the allocator's source of memory (e.g. by
returning an allocator from a function)

● In C++11 a new copy of a container will call
select_on_container_copy_construction()on the
source allocator, instead of just taking a copy

Allocator propagation

● In C++03 a container that is assigned to can
reuse its existing allocated memory

● In C++11 if POCCA is true the container being
assigned to will have its allocator replaced with
a copy of the source container's allocator

● But if the two allocators are not equal then the
existing storage must be deallocated before the
allocator is replaced, then new storage
allocated with the new allocator

● Without allocator propagation, move assigning
to a container is simple: the target object takes
ownership of the source object's data

● If POCMA is false the target container will not
have its allocator replaced by the source
object's allocator

● If the two allocators are not equal then the
target cannot take ownership of the source's
data and instead must individually move-assign
source elements to its own elements, allocating
additional memory if required

● This means when POCMA is false, move
assignment might take O(n) time and could
throw exceptions if re-allocation is needed

● In C++03 swapping containers does not swap
the allocators,

● If POCMA is false the target container will not
have its allocator replaced by the source
object's allocator

● If the two allocators are not equal then the
target cannot take ownership of the source's
data and instead must individually move-assign
source elements to its own elements, allocating
additional memory if required

● This means when POCMA is false, move
assignment might take O(n) time and could
throw exceptions if re-allocation is needed

Problems with C++11 Allocators

● In order to maintain backwards compatibility,
propagate_on_container_move_assignment defaults
to false, but std::allocator does not override
the default

● Containers using std::allocator (or other
allocators with POCMA=false) perform a
runtime equality comparison in the move
assignment operator, so lose the noexcept
property on move assignment

● POCMA should be true for std::allocator, and
authors of stateless allocators should override it

Problems with C++11 Allocators

● No compile-time property to tell if allocators
always compare equal

● If operator== was allowed to return something
“convertible to bool” instead of bool then
equality comparisons for stateless “always
equal” allocators could return std::true_type
instead

● That could be detected at compile-time and
used to make container move assignment and
swap noexcept when using stateless allocators

Problems with C++11 Allocators

● Allocators requirements are incomplete
● When POCCA is true allocators need to be nothrow

CopyAssignable
● When POCMA is true allocators need to be nothrow

MoveAssignable
● When POCS is true allocators need to be nothrow

Swappable

Problems with C++11 Allocators

● allocator_traits::construct doesn't use new
uniform initialization syntax

● Prevents using “emplace” functions for
aggregates:
struct S { int i; char c; };
std::vector<S> v;
v.emplace_back(1, 'a');

● Changing to always use uniform init would
break some code, (vector{1,3} is not the same
as vector(1,3)), but it would be possible to fall-
back to uniform init if the other syntax is invalid

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

