
Erlang Solutions Ltd.

© 1999-2011 Erlang Solutions Ltd.

How never to learn from failure
Ulf Wiger, CTO Erlang Solutions Ltd
ACCU, Oxford 2011

© 2011 Erlang Solutions Ltd.

About me

• 6 years working with Military C2 and
Disaster Response in Alaska

• 13 years as Software Architect at Ericsson

• 2 years at Erlang Solutions as CTO

© 2011 Erlang Solutions Ltd.

To not learn from history

• “We learn from history that we do not learn
from history”

• “Human history is a drama in which the stories
stay the same, the scripts of those stories change
slowly with evolving cultures, and the stage
settings change all the time.”

G.F.W. Hegel

Fred Brooks, “Mythical Man-Month, Anniversary Ed.”

© 2011 Erlang Solutions Ltd.

Programmers are Optimists

• “All programmers are optimists. Perhaps this
modern sorcery especially attracts those who
believe in happy endings and fairy godmothers”

• Possible problem: Why learn from others’
mistakes, when it is so much fun to make your
own?

Fred Brooks, “Mythical Man-Month”

© 2011 Erlang Solutions Ltd.

Taxonomy of Programming

Programming

Product
Development Study

Experiment Research

• Survey

• Select

• Enhance

• Ship

© 2011 Erlang Solutions Ltd.

Taxonomy of Programming

Programming

Product
Development Study

Experiment Research

• Survey

• Select

• Enhance

• Ship

© 2011 Erlang Solutions Ltd.

AC2SMAN - My formative years
• Alaskan Command & Control System

Military Automated Network

- Built in 4 months by a fighter pilot
from Memphis, and some geeks

- First ever “Overall Outstanding”
rating given by NORAD 1989

© 2011 Erlang Solutions Ltd.

Cool Lesson

• Running exercises with 50,000 soldiers

• Number of exercise controllers went down

- from 900 without the system

- to 30 with the system

• Later, during Desert Storm

- The first ever fully simulated battle exercise

• Huge potential for reducing admin overhead

© 2011 Erlang Solutions Ltd.

The C2 System Design Challenge

• Mission-critical

• Soft real-time

• Inconsistent data input

• Varying operating conditions

• Potentially global scale

• No single point of failure (40+ sites)

• Live, simulation and exercise
– sometimes simultaneously

© 2011 Erlang Solutions Ltd.

Rewind: The Feed Aggregation Problem

• Real-time subscription feed for
tactical map workstations

• Messaging server was a big
pile of C++ code

• Single point of failure

• Ran out of memory daily

• (Not due to programmer
incompetence)
- Purify was invented in 1990

© 2011 Erlang Solutions Ltd.

I was Searching for a Solution

• Tons of approaches
evaluated
- CASE Tools, Client-Server

middleware, AI middleware…

• Eventually landed in
telecoms 1992
- ”Computers in

Telecommunictions”
course at KTH, Stockholm

- Teachers: B Däcker, R Virding

25-lines switchboard,
Natal Province, South Africa 1897
Cross-switchboard calls required

human interaction.

© 2011 Erlang Solutions Ltd.

Erlang, Intuitively

http://video.google.com/videoplay?docid=-5830318882717959520#

© 2011 Erlang Solutions Ltd.

Erlang, Intuitively

• One concurrent process
for each naturally
concurrent
activity

© 2011 Erlang Solutions Ltd.

Erlang, Intuitively

• One concurrent process
for each naturally
concurrent
activity

© 2011 Erlang Solutions Ltd.

S

Client-server in Erlang

Client monitors server1

Client sends a request2

(Blocks while waiting)3

C

MRef

SC
Request (Mref)

SC Reply (Mref) Server sends reply4

© 2011 Erlang Solutions Ltd.

S

Client-server in Erlang

Client monitors server1

Client sends a request2

Blocks while waiting3

C

MRef

SC
Request (Mref)

SC Reply (Mref) Server sends reply4

call(S, Request, Timeout) ->
 Mref = monitor(process, S),
 S ! {call, Mref, Request},
 awaiting_reply(Mref, Timeout).

awaiting_reply(Mref, Timeout) ->
 receive
 {Mref, Reply} ->
 Reply;
 {’DOWN’, Mref, _, _, Reason} ->
 error(Reason)
 after Timeout ->
 error(timeout)
 end.

© 2011 Erlang Solutions Ltd.

Ericsson – The Mythical Project

• I joined Ericsson 1996 to work with Erlang

• A very large project had just been canceled

- A very public failure

• Distributed real-time, fault-tolerant complex
systems in C++

© 2011 Erlang Solutions Ltd.

Why did it crash?

• No obvious single culprit

- Discussions about what went wrong dragged
on for years

• Obviously, the size of the project was a problem

- But why so large?

• OO mania, featuritis, hubris?

• My thought: failure to contain the problem

© 2011 Erlang Solutions Ltd.

AXD301 – The Pickup Project

• 200 people put into one building

• Mission: Build a product within 2 years

- “Something in the ATM domain with Telecom
Characteristics”

• Erlang/OTP

© 2011 Erlang Solutions Ltd.

Pragmatic thinking

• Shell shocked from previous project

• Fall back on what’s known to work

• Straight and simple took us pretty far

- Design for what we need right now

- Rework later if necessary

© 2011 Erlang Solutions Ltd.

Some figures

• Up to 16x16 = 256 interconnected boards

• Up to 32 control plane processors

• Up to 500k simultaneous phone calls

• > 99.999% consistent uptime

- (including maintenance & upgrades)

Pretty big and
robust...

© 2011 Erlang Solutions Ltd.

Failed evangelism

• We estimated 4x fewer lines of code, compared
to similar systems in C++

- Same fault density

- Similar LOC/hr productivity

- 4x higher quality and productivity

• Later, we reduced the fault density by another
2.5x, while adding functionality

• This had little impact on our political standing

© 2011 Erlang Solutions Ltd.

Life in a Big Company

• Big possibilities, big frustrations

• Big companies are like small societies

- Complete with politicians and all

• Size drives hierarchies

• Hierarchies need middle-men

• Middle-men mainly relay and aggregate
information

- How do you ensure that the “right”
information is conveyed?

© 2011 Erlang Solutions Ltd.

Flow of Information

• “An organization loses its intuition when
the person who has the answer isn’t talking
to the person who has the question”

• The key information flow
is bottom-up—not top-down

Tim Berners-Lee: “Weaving the Web”

Aggregate/link

Do/report

Manage

© 2011 Erlang Solutions Ltd.

Flow of Information

• “An organization loses its intuition when
the person who has the answer isn’t talking
to the person who has the question”

• The key information flow
is bottom-up—not top-down

Tim Berners-Lee: “Weaving the Web”

Aggregate/link

Do/report

Manage

© 2011 Erlang Solutions Ltd.

State Machine Hell

Legacy Phone Switch

Switch Emulator and
Voice-over-ATM Controller

PLEX

Erlang

Extremely complex state machines
Aggregation/suppression of messages

...but quite doable with Erlang

© 2011 Erlang Solutions Ltd.

Abstractions for non-determinism

• We were building complex distributed message-
passing systems

• Key challenge: contain the non-determinism!

• Prevent explosion of the state-event matrix

• This had been identified by Ericsson already in
the late 70s…

- First experienced in the 60s

- Identified and explained late 70s

- Coloured EriPascal, Erlang, CHILL, et al

© 2011 Erlang Solutions Ltd.

Some similar projects

• In one (mature) UML/C++ project,
10% of all bugs were related to
unexpected order of events

• Inadequate methods for abstracting away
accidental ordering

• Confusion as to whether OO abstractions
actually helped this issue

© 2011 Erlang Solutions Ltd.

Analogy: Tetris Management

• The age-old classic has
coined a new time
management method

• The idea: learn to keep
the pile small

© 2011 Erlang Solutions Ltd.

Tetris Management

• Used in a derogatory
sense at a major
software development
project

• As in “reactive
management without a
plan”

• Basically, don’t let your
project become a tetris
game

© 2011 Erlang Solutions Ltd.

A different kind of puzzle

• What if your puzzle resembles this?

• Would you attack this problem with a Tetris
approach?

http://www.worldslargestpuzzle.com/hof-008.html

© 2011 Erlang Solutions Ltd.

Event-handling Strategies

• Twist and place the
next piece before it
lands

• In cheat mode, you
get to peek at the
next piece

• Otherwise, hope for
the best

• Search for a specific
piece

• Put aside pieces that
don’t fit

• Keep at it until fitting
piece found

© 2011 Erlang Solutions Ltd.

Event-handling in Software

• FIFO Run-to-
completion event
handling

• Not allowed to block

• Fine, as long as the
pieces (messages) fit

• Blocking, selective
receive

• Wait until the next
desired message arrives

• Buffer unknown
messages

© 2011 Erlang Solutions Ltd.

(Movie tip)

• Memento (2000)

• Human FIFO Run-to-
completion event
handling

• Storing context for
future reference

Memento (2000) http://www.imdb.com/title/tt0209144/

© 2011 Erlang Solutions Ltd.

Attempt at Pedagogy

• Demo system used in
Ericsson’s Introductory Erlang
Course
- Write a control program for a

POTS subscriber loop

• Here: rewrite the control loop
using different semantics
- Selective message passing

- Event dispatch

• A few minds converted...

© 2011 Erlang Solutions Ltd.

The Simon P-J Test

• Invited to talk at WG2.8 at West Point 2004

• Topic: A plea to teach this pattern in college

• Tried the idea on a severely jetlagged
Simon Peyton Jones (ICFP, Snowbird)

• He verified that it is not well known

• Not sure if it is in the curriculum now...

© 2011 Erlang Solutions Ltd.

One Wonders...

• Why several projects, even when approached
with this explanation, chose to try their own
event-based C++ variant?

- They all invariably fell into the same hole

• Problems not apparent in early prototypes

• The complexity sneaks up on you

- As you start implementing the exception flows

- As you add new protocols and features

- As increased load changes timing aspects

© 2011 Erlang Solutions Ltd.

Putt’s Law

• “Technology is dominated by two types of
people:
- those who understand what they do not manage

and those who manage what they do not understand."

• Corollary:
- “Every technical hierarchy, in time,

develops a competence inversion.”

• If you’re out of your depth, being wrong is scary

Archibald Putt: “Putt’s Law and the Successful Technocrat”

© 2011 Erlang Solutions Ltd.

Big organisation—Bell Curve

• Ideally, the few top designers/architects
should drive concept and architecture work

• In practice, it tends to be driven by people closer
to the middle

© 2011 Erlang Solutions Ltd.

Division of Labour—Wissenwurst

• Knowledge is chopped
into pieces

• Rather than grown
continuously

• People can deal with
enormous complexity
if given time to digest

© 2011 Erlang Solutions Ltd.

In Conclusion

• Many non-technical issues interfere with
learning from our past mistakes

• Transparency in communication is vital

• Continuity of learning

• Dare to be wrong!

