PROGRESS

SOFTWARE

RESTful Services and Distributed OSGi

Friends or Foes

Roland Tritsch

Director PS FUSE
ACCU 2009 - Apr., 23rd - Oxford (UK)

Why is this relevant?

Users and usage ...

IBM's WebSphere

Oracle's Weblogic

Progress’'s FUSE

Red Hat's JBoss

SpringSource's Application Platform

Sun Microsystem's GlassFish Enterprise Server

Linked-In, SAP NetWeaver, Telco, ... :)

http://www.ibm.com/
http://www.ibm.com/
http://www.ibm.com/websphere/
http://www.ibm.com/websphere/
http://www.oracle.com/
http://www.oracle.com/
http://www.oracle.com/appserver/weblogic/
http://www.oracle.com/appserver/weblogic/
http://www.redhat.com/
http://www.redhat.com/
http://www.jboss.org/
http://www.jboss.org/
http://www.springsource.com/
http://www.springsource.com/
http://www.springsource.com/products/suite/applicationplatform
http://www.springsource.com/products/suite/applicationplatform
http://www.sun.com/
http://www.sun.com/
https://glassfish.dev.java.net/
https://glassfish.dev.java.net/

Introduction to OSGi and REST
The consortium, the standards, the users
Why to use it and how to use it

Exposing WebServices from an OSGi
container

To REST or not to REST that is here the ...

Wrap and Summary
Current challenges and future developments

The History

OSGi originally stood for “Open Services
Gateway initiative”

An initiative focused on deploying Java solutions

into “residential gateways” for smart homes and
building controls

The OSGi alliance was founded in 1999 to
promote wide scale adoption of OSGi technology

OSGi tackles the problem of deploying and
administering Java “modules” (aka “bundles”)

Lifecycle - How to load, start, and stop Java
bundles without shutting down the JVM

The Benefits

My personal hit list ...

Mobile to Mainframe

Managing the “CLASSPATH hell”

With great tools/tooling around it

The OSGi Alliance

The OSGi alliance is made up of over 40
members. Including ...

IBM, Progress, RedHat, SpringSource,
Gigaspaces, Sun Microsystems ...

Specifications are created by expert groups
Core Platform Expert Group (CPEG)

Vehicle Expert Group (VEG) - OSGi in the
automotive industry

Mobile Expert Group (MEG) - OSGi in mobile
telecommunications

The OSGi Alliance (cont.)

Specifications are created by expert groups

Residential Expert Group (REG) - OSGi in
consumer and residential applications

Enterprise Expert Group (EEG) - OSGi in
enterprise IT infrastructure applications

Distributed OSGIi/RFC 119 describes how to allow
remote invocations between OSGi containers
A reference implementation is based on Apache CXF

OSGi - Architecture Overview

Life Cycle é‘
<

Execution Environment

Native Operating System

Source: www.osgi.org

OSGi - Key/Core Concepts - Bundles

A bundle is a Java archive (JAR) with some
meta-data

The meta-data is provided in plain-text in the
META-INF/MANIFEST.MF file.

Bundle meta-data includes the following

Bundle-Name, Bundle-Symbolic-Name, Bundle-
Version, Export-Package, Import-Package

Only those packages matching java.” are
imported by default

all other packages must be imported explicitly

OSGi - Key/Core Concepts - Services

Services in OSGi are Java objects, invoked
using local method invocations

Used to allow dynamic (re)use of code

The Distributed OSGi specification (EEG RFC
119) extends this concept to allow distributed
communication.

A service in one OSGi framework instance could
iInvoke on another service deployed in a different
OSGi framework instance.

Services use additional OSGi properties to mark
a service as “remote”.

OSGi - Key/Core Concepts - Class Loading

Using graph-based class-loading with versioned
bundles means:

The same JVM can host numerous bundles ...

... Including different versions of the same
bundle, ...

... that can share and re-use classes, ...
... with no runtime class-loading conflicts, ...
... In a standardized manner.

This is a major contribution of OSGi, in that it
removes much of the risk associated with
different JARs in the same JVM container

OSGi - Implementations

The “not-complete” list ... :)

Apache Felix (from Apache Software
Foundation)

Distributed under ASL 2.0
http://felix.apache.org/

Equinox (from Eclipse Foundation)
Distributed under the Eclipse License
http://eclipse.org/equinox

Knoplerfish (knoplerfish.org)

Distributed under the Knoplerfish License
http://knoplerfish.org

http://felix.apache.org
http://felix.apache.org
http://felix.apache.org
http://felix.apache.org
http://eclipse.org/equinox
http://eclipse.org/equinox
http://knoplerfish.org
http://knoplerfish.org

REST - Introduction

JAX-RS/JSR311 provides Java language
support for RESTful services

For more information on REST, see Roy
Fielding’s Ph.D. thesis:

http://www.ics.uci.edu/~fielding/pubs/dissertation/
top.htm
The approach is ideal for services that will be
consumed by rich, browser- based internet client

technologies like JavaScript and Google Web
Toolkit (GWT)

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

REST - Key/Core Concepts

Approach:
Annotate - your Java service.
Deploy - in Spring Framework,
Tomcat, J2EE, or standalone.

Consume — e.g. from AJAX
clients.

ContactsService. java

@Path (“contactservice”)
interface ContactsService {

@GET
@Path (“/contacts/{id}"”)

public Contact getContact (
@PathParam(“id”) int id);

http://frodo:9000/contacts/123

<ns4.Contact>
<firstName>Ade</firstName>
<lastName>Trenaman</lastName>
<company>IONA Technologies</company>
<title>Principal Consultant</title>
<email>adrian.trenaman@iona.com</email>
<mobile>+353-86-6051026</mobile>

<<server>>
frodo:

<<fuse-service>>@

:ContactsService

HTTP

The REST Interface

No formal interface definition language (WSDL,
IDL) is used

However, XSD is often used for data definition.

A service’'s “parameters” are passed via payload

and URL
http://localhost:9000/contacts/007

Apache CXF supports multiple payloads,
including XML and JSON

http://localhost:9000/contacts/007
http://localhost:9000/contacts/007

The REST Interface (cont.)

Services make use of a natural mapping from
HTTP verbs to CRUD operations.

POST: Create a new item of data on the service.
GET:. Retrieve data from the service.

PUT: Update data on the service.

DELETE: Delete data from services.

The REST Interface - "HTTP” tunneling

Some client-side tooling only supports GET and
POST

Instead of using PUT and DELETE, you can
encode the operation for a create, delete or
update into the URL of a HTTP POST

POST http://frodo/deleteCustomer/{id}

Don’t use this approach with HTTP GET, which
should obey “read-only” semantics

http://livepage.apple.com/
http://livepage.apple.com/

Testing RESTful Services

You can test your REST services by simply
pointing a browser at the URL

This will implicitly perform a GET on your service

Alternatively, you can use command-line tools
like wget or curl

Introduction to OSGi and REST
The consortium, the standards, the users
Why to use it and how to use it

Exposing WebServices from an OSGi
container

To REST or not to REST that is here the ...

Wrap and Summary
Current challenges and future developments

Distributed OSGi

Exposing and Consuming WebServices

Distributed OSGi Demo (RFC 119)

Client Side Server Side

Core Felix Bundles Core Felix Bundles

Library Bundles Library Bundles

RFC 119 Bundles RFC 119 Bundles
(Apache CXF) (Apache CXF)

My App Interfaces Bundle My App Interfaces Bundle

My App Consumer Bundle My App Service Bundle

T imvokes creates

@ publishes

remote endpoint

remote
invocation

Source: http:

http://blogs.iona.com/newcomer/OSGiCommunityEvent-DistOSGi.pdf
http://blogs.iona.com/newcomer/OSGiCommunityEvent-DistOSGi.pdf

Exposing WebServices and ...

public class Activator implements BundleActivator {
private ServiceRegistration sr;

public void start(BundleContext context) throws Exception {
Dictionary props = new Hashtable();
props.put("osgi.remote.interfaces", "*");
sr = context.registerService(
AuctionService.class.getName(),
new AuctionServiceImpl(), props);

public void stop(BundleContext context) throws Exception {
sr.unregister();

Source: http://coderthoughts.blogspot.com/2009/02/distributed-osgi-simple-example.html

... consuming WebServices

public class Activator implements BundleActivator {
private ServiceTracker st;

public void start(final BundleContext bc) throws Exception {
st = new ServiceTracker (bc,
AuctionService.class.getName(), null) {
@Override
public Object addingService(ServiceReference reference){
Object svc = bc.getService(reference);
if (svc instanceof AuctionService) {
printServicelInfo((AuctionService) svc);
}
return super.addingService(reference);
}
}i
st.open();

}
Source: http://coderthoughts.blogspot.com/2009/02/distributed-osgi-simple-example.html

Making D-OSGi and REST work together

Publishing RESTful endpoints from an OSGi
container is possible right now

Package you annotated JAVA classes in a bundle
and implement a suitable Activator() to start
endpoint
Consuming RESTful services from an OSGi
container is less straight forward

You can always consume them manually with
your own RESTful client side stack, but they will
not look like OSGi services

D-OSGi wants to make distribution seamless

Making D-OSGi and REST work together

The JAX-RS/JSR311 spec does not define a
client side API| for RESTful services ...

... but Jersey and Apache CXF do have such
APls, means ...

... both of these implementations are probably
suitable to be plugged-in D-OSGi to allow OSGi
containers to get seamless access to RESTful
services

Introduction to OSGi and REST
The consortium, the standards, the users
Why to use it and how to use it

Exposing WebServices from an OSGi
container

To REST or not to REST that is here the ...

Wrap and Summary
Current challenges and future developments

References

The OSGi Alliance - http://www.o0sgi.org

REST - http://www.ics.uci.edu/~fielding/pubs/
dissertation/top.htm

Distributed OSGi

Reference Implementation - http://cxf.apache.org/
distributed-osqi.html

http://www.osgi.org
http://www.osgi.org
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://cxf.apache.org/distributed-osgi.html
http://cxf.apache.org/distributed-osgi.html
http://cxf.apache.org/distributed-osgi.html
http://cxf.apache.org/distributed-osgi.html

Current Situation and Next Steps

OSGi is on the rise

With the efforts around D-OSGi, (RESTful)
WebServices are first class citizens in the OSGi
world

OSGi will become the de-facto deployment
environment for (RESTful) WebServices

The next steps could be to extend D-OSGi to
iInclude support for async messaging

Questions

Questions

Thank You!

PROGRESS

SOFTWARE

