
RESTful Services and Distributed OSGi

Friends or Foes

Roland Tritsch
Director PS FUSE

ACCU 2009 - Apr., 23rd - Oxford (UK)

© 2009 Progress Software Corporation2

Why is this relevant?

 IBM's WebSphere
 Oracle's Weblogic
 Progress’s FUSE
 Red Hat's JBoss
 SpringSource's Application Platform
 Sun Microsystem's GlassFish Enterprise Server

 Linked-In, SAP NetWeaver, Telco, ... :)

Users and usage ...

http://www.ibm.com/
http://www.ibm.com/
http://www.ibm.com/websphere/
http://www.ibm.com/websphere/
http://www.oracle.com/
http://www.oracle.com/
http://www.oracle.com/appserver/weblogic/
http://www.oracle.com/appserver/weblogic/
http://www.redhat.com/
http://www.redhat.com/
http://www.jboss.org/
http://www.jboss.org/
http://www.springsource.com/
http://www.springsource.com/
http://www.springsource.com/products/suite/applicationplatform
http://www.springsource.com/products/suite/applicationplatform
http://www.sun.com/
http://www.sun.com/
https://glassfish.dev.java.net/
https://glassfish.dev.java.net/

© 2009 Progress Software Corporation3

Agenda

 Introduction to OSGi and REST
• The consortium, the standards, the users

• Why to use it and how to use it

 Exposing WebServices from an OSGi
container
• To REST or not to REST that is here the ...

 Wrap and Summary
• Current challenges and future developments

© 2009 Progress Software Corporation4

The History

 OSGi originally stood for “Open Services
Gateway initiative”
• An initiative focused on deploying Java solutions

into “residential gateways” for smart homes and
building controls

• The OSGi alliance was founded in 1999 to
promote wide scale adoption of OSGi technology

 OSGi tackles the problem of deploying and
administering Java “modules” (aka “bundles”)
• Lifecycle - How to load, start, and stop Java

bundles without shutting down the JVM

© 2009 Progress Software Corporation5

The Benefits

 Mobile to Mainframe

 Managing the “CLASSPATH hell”

 With great tools/tooling around it

My personal hit list ...

© 2009 Progress Software Corporation6

The OSGi Alliance

 The OSGi alliance is made up of over 40
members. Including ...
• IBM, Progress, RedHat, SpringSource,

Gigaspaces, Sun Microsystems ...

 Specifications are created by expert groups
• Core Platform Expert Group (CPEG)

• Vehicle Expert Group (VEG) - OSGi in the
automotive industry

• Mobile Expert Group (MEG) - OSGi in mobile
telecommunications

© 2009 Progress Software Corporation7

The OSGi Alliance (cont.)

 Specifications are created by expert groups
• Residential Expert Group (REG) - OSGi in

consumer and residential applications

• Enterprise Expert Group (EEG) - OSGi in
enterprise IT infrastructure applications

– Distributed OSGi/RFC 119 describes how to allow
remote invocations between OSGi containers
 A reference implementation is based on Apache CXF

© 2009 Progress Software Corporation

OSGi - Architecture Overview

Source: www.osgi.org

© 2009 Progress Software Corporation9

OSGi - Key/Core Concepts - Bundles

 A bundle is a Java archive (JAR) with some
meta-data
• The meta-data is provided in plain-text in the

META-INF/MANIFEST.MF file.

 Bundle meta-data includes the following
• Bundle-Name, Bundle-Symbolic-Name, Bundle-

Version, Export-Package, Import-Package

 Only those packages matching java.* are
imported by default
• all other packages must be imported explicitly

© 2009 Progress Software Corporation10

OSGi - Key/Core Concepts - Services

 Services in OSGi are Java objects, invoked
using local method invocations
• Used to allow dynamic (re)use of code

 The Distributed OSGi specification (EEG RFC
119) extends this concept to allow distributed
communication.
• A service in one OSGi framework instance could

invoke on another service deployed in a different
OSGi framework instance.

• Services use additional OSGi properties to mark
a service as “remote”.

© 2009 Progress Software Corporation11

OSGi - Key/Core Concepts - Class Loading

 Using graph-based class-loading with versioned
bundles means:
• The same JVM can host numerous bundles …

• … including different versions of the same
bundle, …

• … that can share and re-use classes, …

• … with no runtime class-loading conflicts, …

• … in a standardized manner.

 This is a major contribution of OSGi, in that it
removes much of the risk associated with
different JARs in the same JVM container

© 2009 Progress Software Corporation12

OSGi - Implementations

 Apache Felix (from Apache Software
Foundation)
• Distributed under ASL 2.0

• http://felix.apache.org/

 Equinox (from Eclipse Foundation)
• Distributed under the Eclipse License

• http://eclipse.org/equinox

 Knoplerfish (knoplerfish.org)
• Distributed under the Knoplerfish License

• http://knoplerfish.org

The “not-complete” list ... :)

http://felix.apache.org
http://felix.apache.org
http://felix.apache.org
http://felix.apache.org
http://eclipse.org/equinox
http://eclipse.org/equinox
http://knoplerfish.org
http://knoplerfish.org

© 2009 Progress Software Corporation13

REST - Introduction

 JAX-RS/JSR311 provides Java language
support for RESTful services
• For more information on REST, see Roy

Fielding’s Ph.D. thesis:
– http://www.ics.uci.edu/~fielding/pubs/dissertation/

top.htm

 The approach is ideal for services that will be
consumed by rich, browser- based internet client
technologies like JavaScript and Google Web
Toolkit (GWT)

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

© 2009 Progress Software Corporation14

REST - Key/Core Concepts

 Approach:
• Annotate - your Java service.

• Deploy - in Spring Framework,
Tomcat, J2EE, or standalone.

• Consume – e.g. from AJAX
clients.

© 2009 Progress Software Corporation15

The REST Interface

 No formal interface definition language (WSDL,
IDL) is used
• However, XSD is often used for data definition.

 A service’s “parameters” are passed via payload
and URL
• http://localhost:9000/contacts/007

• Apache CXF supports multiple payloads,
including XML and JSON

http://localhost:9000/contacts/007
http://localhost:9000/contacts/007

© 2009 Progress Software Corporation16

The REST Interface (cont.)

 Services make use of a natural mapping from
HTTP verbs to CRUD operations.
• POST: Create a new item of data on the service.

• GET: Retrieve data from the service.

• PUT: Update data on the service.

• DELETE: Delete data from services.

© 2009 Progress Software Corporation17

The REST Interface - “HTTP” tunneling

 Some client-side tooling only supports GET and
POST

 Instead of using PUT and DELETE, you can
encode the operation for a create, delete or
update into the URL of a HTTP POST
• POST http://frodo/deleteCustomer/{id}

• Don’t use this approach with HTTP GET, which
should obey “read-only” semantics

http://livepage.apple.com/
http://livepage.apple.com/

© 2009 Progress Software Corporation18

Testing RESTful Services

 You can test your REST services by simply
pointing a browser at the URL
• This will implicitly perform a GET on your service

 Alternatively, you can use command-line tools
like wget or curl

© 2009 Progress Software Corporation19

Agenda

 Introduction to OSGi and REST
• The consortium, the standards, the users

• Why to use it and how to use it

 Exposing WebServices from an OSGi
container
• To REST or not to REST that is here the ...

 Wrap and Summary
• Current challenges and future developments

© 2009 Progress Software Corporation20

Distributed OSGi

Exposing and Consuming WebServices

! !

!"#$%"&'$()*+,-"*!(./*0123*4456

!"#$"#%!&'"

()#"%*"+&,%-./'+"0

1&2#3#4%-./'+"0

5*(%667%-./'+"0
89:3;<"%(=*>

?4%9::%@/A"#B3;"0%-./'+"

?4%9::%!"#$&;"%-./'+"

C!D&
0$;

!"#$%#&

'()*+&,#&

"#-.%#/#01'.+0%

(+&"/A%!&'"

()#"%*"+&,%-./'+"0

1&2#3#4%-./'+"0

5*(%667%-./'+"0
89:3;<"%(=*>

?4%9::%@/A"#B3;"0%-./'+"

?4%9::%()/0.E"#%-./'+"

0$;
:#),4

+02.3#&
'".2+1#&

'&0;)$"#4
0"#$&;"

%(./$(
"78/9:$"/7

"#-.%#
&#"2+!#
-#%1%$

Source: http://blogs.iona.com/newcomer/OSGiCommunityEvent-DistOSGi.pdf

http://blogs.iona.com/newcomer/OSGiCommunityEvent-DistOSGi.pdf
http://blogs.iona.com/newcomer/OSGiCommunityEvent-DistOSGi.pdf

© 2009 Progress Software Corporation21

Exposing WebServices and ...

public class Activator implements BundleActivator {
 private ServiceRegistration sr;

 public void start(BundleContext context) throws Exception {
 Dictionary props = new Hashtable();
 props.put("osgi.remote.interfaces", "*");
 sr = context.registerService(
 AuctionService.class.getName(),
 new AuctionServiceImpl(), props);
 }

 public void stop(BundleContext context) throws Exception {
 sr.unregister();
 }
}

Source: http://coderthoughts.blogspot.com/2009/02/distributed-osgi-simple-example.html

© 2009 Progress Software Corporation22

... consuming WebServices

public class Activator implements BundleActivator {
 private ServiceTracker st;

 public void start(final BundleContext bc) throws Exception {
 st = new ServiceTracker(bc,
 AuctionService.class.getName(), null) {
 @Override
 public Object addingService(ServiceReference reference){
 Object svc = bc.getService(reference);
 if (svc instanceof AuctionService) {
 printServiceInfo((AuctionService) svc);
 }
 return super.addingService(reference);
 }
 };
 st.open();
 } ...

Source: http://coderthoughts.blogspot.com/2009/02/distributed-osgi-simple-example.html

© 2009 Progress Software Corporation23

Making D-OSGi and REST work together

 Publishing RESTful endpoints from an OSGi
container is possible right now
• Package you annotated JAVA classes in a bundle

and implement a suitable Activator() to start
endpoint

 Consuming RESTful services from an OSGi
container is less straight forward
• You can always consume them manually with

your own RESTful client side stack, but they will
not look like OSGi services

 D-OSGi wants to make distribution seamless

© 2009 Progress Software Corporation24

Making D-OSGi and REST work together

 The JAX-RS/JSR311 spec does not define a
client side API for RESTful services ...

 ... but Jersey and Apache CXF do have such
APIs, means ...

 ... both of these implementations are probably
suitable to be plugged-in D-OSGi to allow OSGi
containers to get seamless access to RESTful
services

© 2009 Progress Software Corporation25

Agenda

 Introduction to OSGi and REST
• The consortium, the standards, the users

• Why to use it and how to use it

 Exposing WebServices from an OSGi
container
• To REST or not to REST that is here the ...

 Wrap and Summary
• Current challenges and future developments

© 2009 Progress Software Corporation26

References

 The OSGi Alliance - http://www.osgi.org

 REST - http://www.ics.uci.edu/~fielding/pubs/
dissertation/top.htm

 Distributed OSGi
• Reference Implementation - http://cxf.apache.org/

distributed-osgi.html

http://www.osgi.org
http://www.osgi.org
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://cxf.apache.org/distributed-osgi.html
http://cxf.apache.org/distributed-osgi.html
http://cxf.apache.org/distributed-osgi.html
http://cxf.apache.org/distributed-osgi.html

© 2009 Progress Software Corporation27

Current Situation and Next Steps

 OSGi is on the rise

 With the efforts around D-OSGi, (RESTful)
WebServices are first class citizens in the OSGi
world
• OSGi will become the de-facto deployment

environment for (RESTful) WebServices

 The next steps could be to extend D-OSGi to
include support for async messaging

© 2009 Progress Software Corporation28

Questions

© 2009 Progress Software Corporation29

Questions

Thank You!

© 2009 Progress Software Corporation30

