
Defining Domain-Specific Modelling Languages - Tolvanen 1

Defining Domain-Specific
Modelling Languages

22 April 2009

Juha-Pekka Tolvanen, Ph.D.

© 2009 Juha-Pekka Tolvanen / MetaCase 2

Outline

� Introduction

� The vision of Model Driven Development

� Examples and case studies

� Architecture for defining and using MDD

� Implementing MDD

� Summary

Defining Domain-Specific Modelling Languages - Tolvanen 2

© 2009 Juha-Pekka Tolvanen / MetaCase 3

Outline

� Introduction

� The vision of Model Driven Development

– DSM: Domain-Specific Modelling

– SF: Software Factories

– MDA: Model Driven Architecture

© 2009 Juha-Pekka Tolvanen / MetaCase 4

How has productivity improved?

� "The entire history of software
engineering is that of the rise in
levels of abstraction"

� New programming languages
have not increased productivity

� UML and visualization of code
have not increased productivity

� Abstraction of development can

be raised above current level...

� ... and still generate full
production code (and ignore it!)

*Software Productivity Research & Capers Jones, 2002

Defining Domain-Specific Modelling Languages - Tolvanen 3

© 2009 Juha-Pekka Tolvanen / MetaCase 5

Domain
Idea

Finished
Product

S
o
lv
e
 p
ro
b
le
m
 i
n
 d
o
m
a
in
 t
e
rm

s

Assembler
Map to code, implement

UML Model
Map to UML

Generate,
Add bodies

Domain
Framework

Model in
DSM

language

Generate codeNo need

to map!

Code
Map to code, implement

Modelling functionality vs. modelling code

© 2009 Juha-Pekka Tolvanen / MetaCase 6

DSM: Domain-Specific Modelling

� Captures domain knowledge (as opposed to code)

– Raise abstraction from implementation world

– Uses domain abstractions

– Applies domain concepts and rules as modelling constructs

– Narrow down the design space

– Focus on a single range of products

� Lets developers design products using domain
terms

�Apply familiar terminology

�Solve the RIGHT problems

�Solve problems only ONCE!

– directly in models, not again by writing code, UML, docs etc.

Defining Domain-Specific Modelling Languages - Tolvanen 4

© 2009 Juha-Pekka Tolvanen / MetaCase 7

Domain
Idea

Finished
Product

Example: Digital wristwatch

Domain
Framework

Model in
DSM

language

Generate codeNo need

to map!

� Product family
– Models: His, Hers, Sport, Kid, Traveler,

Diver…

� Reusable component applications
– Time, Alarm, Timer, WorldTime, StopWatch…

� Hide complexity from modeller
– Model-View-Controller separation

– Separate thread for real-time display

� Implementation in Java
– Also in MIDP and in C

© 2009 Juha-Pekka Tolvanen / MetaCase 8

Domain
Idea

Finished
Product

Comparing Code, UML, DSM

Domain
Framework

Model in
DSM

language

Generate codeNo need

to map!

� Let’s add a new killer feature!
– Stopwatch with lap-time function

� Points of comparison:
– Where are we thinking: domain or code

world?

– Support for getting the right domain
solution?

– How long does it take?

– Can we do it right first time?

– Is everything updated that should be?

Defining Domain-Specific Modelling Languages - Tolvanen 5

© 2009 Juha-Pekka Tolvanen / MetaCase 9

Mode

Up

Down

Display laptime

Calculate
laptime

1. Read the documents
2. Find the solution
3. Find the relevant code
4. Change the right code
5. Document the code change
6. Test the changes
7. Document the solution

Code-based approach

© 2009 Juha-Pekka Tolvanen / MetaCase 10

Code visualization approach

Defining Domain-Specific Modelling Languages - Tolvanen 6

© 2009 Juha-Pekka Tolvanen / MetaCase 11

1. Read the documents
2. Find the solution
3. Find the relevant models
4. Change the right code

and models
5. Document the code and

model changes
6. Update models (Use

cases, Class models,
Message sequences
models, State models
etc.)

7. Test the changes
8. Document the solution

UML Modelling

© 2009 Juha-Pekka Tolvanen / MetaCase 12

Domain-Specific Modelling

Mode

Running

running

?? : SEC : ??

startTime

startTime

sysTime

stopTime

Down

startTime

Stopped

startTime

A

running

?? : SEC : ??

A Up

stopTime

stopwatch

sysTime

startTime

sysTime

stopTime

stopwatch

stopTime

A
-

-

-

-

+

-

LapTime

Down

sysTime

startTime

stopTime

A-

1. Find the relevant models
2. Change the models

• add feature
• generate code

3. Test the changes

Defining Domain-Specific Modelling Languages - Tolvanen 7

© 2009 Juha-Pekka Tolvanen / MetaCase 13

Why is the vision possible (now)?

� Need to fit only one company’s requirements!

� Modelling is Domain-Specific

– Works for one application domain, framework, product
family etc.

– Language has concepts people are already familiar with

– Models used to solve the problem, not to visualize code

� Generator is Domain-Specific

– Generate just the code needed from models
• Efficient full code

• No manual coding afterwards

• No reason for round-tripping

– Generator links to existing
primitives/components/platform services etc.

– Can generate 3GL, Assembler, object-oriented, XML, etc.

© 2009 Juha-Pekka Tolvanen / MetaCase 14

MDA: Model Driven Architecture

� Hard to pin down: all things to all men

� Strong lock-in to OMG

– Initially "you must use UML"

– But later, in MDA manifesto, Booch et al. say:
"The full value of MDA is only achieved when the
modelling concepts map directly to domain concepts
rather than computer technology concepts"

– Now: "you can have any language you like, as long as it's
like UML" – only allowed to build languages with MOF

� Schism into two schools of thought:

– Elaborationist (OMG): Model a bit, transform, edit
transformed models, generate, edit generated code

– Translationist (XUML): Generate directly from high level
UML-like models

Defining Domain-Specific Modelling Languages - Tolvanen 8

© 2009 Juha-Pekka Tolvanen / MetaCase 15

MDA Pros & Cons

+ OMG: Some claim to vendor-independence (IBM?)

– Standard is missing major areas

– Based on UML, largest and most bug-ridden standard

– Large number of other coupled standards

– MOF, XMI, OCL, QVT – all moving targets, unproven

+ Focused on one domain anyway

+ Business apps with db and web or GUI front-end

+ Largely an accident: just didn't know other domains

+ Vendors will make something work

– But you won't be able to make your own language

– Productivity gains minimal

– E.g. +30% in vendor-sponsored test

© 2009 Juha-Pekka Tolvanen / MetaCase 16

How is DSM different from MDA?

� Same idea on using models and transformations, but...

� DSM is always full code direct from models

– Not OMG MDA (elaborationist)

– Simpler in terms of versioning and management

� DSM = domain-specific language and generators

– MDA is UML-based*

� No reverse- or round-trip engineering in DSM

– We want a real lift in the level of abstraction

– How often do you reverse engineer assembler to code?

� Separation of concerns

– You are the experts in your domain and code (not the
vendor)

� DSM is agile: as much or as little as you want

* official definition, www.omg.org

Defining Domain-Specific Modelling Languages - Tolvanen 9

© 2009 Juha-Pekka Tolvanen / MetaCase 17

SF: Software Factories

� Strongly Microsoft-oriented

– But main figures from outside Microsoft:
Greenfield: Rational, Short: TI, Cook: IBM, Kent: Kent

� Grand Unified(?) Theory

– 666 pages

– Patterns, AOP, reuse, platforms, components, services

– DSLs, generators, frameworks

� Vision varies under commercial pressure

– First own languages, then wizards, now MS designers

� Focus on MS & partners building and selling DSLs

– ISV sells same DSM solution to many companies

• Less domain-specific, companies have less control

– Offsets the "massive effort"* of using their tools

• *Quote from Prashant Sridharan, lead product manager

© 2009 Juha-Pekka Tolvanen / MetaCase 18

SF Pros & Cons

+ Microsoft: Massive resources, will get it made:

– Microsoft: too many cooks and agendas

– Building meta-tools requires strong leadership, focus

– Will the project be continued (remember Rose in VS?)

– MS team lacked real-world experience in DSM

– Will need a rewrite, but will it happen?

+ Basic ideas are sound

+ Book mostly better than later marketing

19921990198719851983

3.1
released

3.0
released

2.0
released

1.0
released

Windows
announced

Defining Domain-Specific Modelling Languages - Tolvanen 10

© 2009 Juha-Pekka Tolvanen / MetaCase 19

DSM Pros & Cons

+ Fundamental productivity and quality improvements

+ 300% faster in scientific study

+ 500-1000% reported by companies

+ 50% less errors in scientific study

+ Gives full control to the company

+ Their experienced developers are in the driver’s seat

– Requires expertise and resources from the company

+ Minimal vendor lock

+ Metamodel-driven tools are open

+ You can translate & transform models to other tools and
formats

– Most tools not mature or ”industrial strength”

– Do not scale to multiple developers or models

– Do not handle evolution and maintenance

© 2009 Juha-Pekka Tolvanen / MetaCase 20

Outline

� Introduction

� The vision of Model Driven Development

� Examples and case studies

– Smartphone applications

– eCommerce marketplace

Defining Domain-Specific Modelling Languages - Tolvanen 11

© 2009 Juha-Pekka Tolvanen / MetaCase 21

Enterprise apps in smartphones

� Symbian/Series 60 for enterprise application
development

� Platform provides basic services

� Modelling language to define application logic using
basic widgets and services

� Code generator produces 100% of implementation

� Complete chain from model to running app

© 2009 Juha-Pekka Tolvanen / MetaCase 22

Defining Domain-Specific Modelling Languages - Tolvanen 12

© 2009 Juha-Pekka Tolvanen / MetaCase 23

© 2009 Juha-Pekka Tolvanen / MetaCase 24

Insurance products & eCommerce

� Developing portal for insurances and financial
products

� Need to specify several hundred financial products

� Insurance experts visually specify insurance
products and generate code to the portal

� Comparison to writing directly Java after first 30
products = DSM at least 3 times faster, fewer errors

Defining Domain-Specific Modelling Languages - Tolvanen 13

© 2009 Juha-Pekka Tolvanen / MetaCase 25

© 2009 Juha-Pekka Tolvanen / MetaCase 26

Defining Domain-Specific Modelling Languages - Tolvanen 14

© 2009 Juha-Pekka Tolvanen / MetaCase 27

Where to apply DSM

� Repetitive development tasks

– Large portion of the work similar to earlier products
(or several products made in parallel)

� Domain expertise needed

– Non-programmers can participate

� These normally include:

– Product Family

– Platform-based development

– Configuration

– Business rule definitions

– Embedded devices

© 2009 Juha-Pekka Tolvanen / MetaCase 28

Outline

� Introduction

� The vision of Model Driven Development

� Examples and case studies

� Architecture for defining and using DSM

– Implementing and using DSM

– Tools for DSM creation and use

Defining Domain-Specific Modelling Languages - Tolvanen 15

© 2009 Juha-Pekka Tolvanen / MetaCase 29

Domain
Idea

Finished
Product

S
o
lv
e
 p
ro
b
le
m
 i
n
 d
o
m
a
in
 t
e
rm

s

Assembler
Map to code, implement

UML Model
Map to UML

Generate,
Add bodies

Code
Map to code, implement

Modelling domain vs. modelling code

Domain
Framework

Model in
DSM

Language

Generate codeNo need

to map!

© 2009 Juha-Pekka Tolvanen / MetaCase 30

Domain
Idea

Finished
Product

Model in
DSM

language

Easy!Normal
(many)

Done a few times before!

Code
generator

DSM
language

Framework
code

How to implement DSM

Domain
Framework

Generate code

Expert
(few)

Defining Domain-Specific Modelling Languages - Tolvanen 16

© 2009 Juha-Pekka Tolvanen / MetaCase 31

DSM environment

DOMAIN-
SPECIFIC

MODELING
LANGUAGE

DOMAIN-
SPECIFIC

CODE
GENERATOR

DSM environment

DOMAIN
FRAMEWORK

� Three things are required for a complete
DSM environment:

1. Domain-specific modelling language

– Metamodel (of the language) maps to
problem domain (not to coding concepts)

– Metamodel bounds allowed design space

2. Code generator(s)

– Generators read models to produce code

– Provide variation for output formats

3. Domain framework

– Include common aspects used as
primitives/components/platform services

– Called by the generated code

© 2009 Juha-Pekka Tolvanen / MetaCase 32

Defining a DSM solution: steps

1. Identify abstractions

– Concepts and how they work together

2. Specify the metamodel

– Language concepts and their rules

3. Create the notation

– Representation of models

4. Define the generators

– Various outputs and analysis of the models

� Apply and refine existing components and libraries

� The process is iterative: try solution with examples

– Define part of the metamodel, model with it, define
generator, extend the metamodel, model some more,
...

Defining Domain-Specific Modelling Languages - Tolvanen 17

© 2009 Juha-Pekka Tolvanen / MetaCase 33

Tools for DSM creation and use

� 6 ways to get the tools we need for DSM

1. Write own modelling tool from scratch

2. Write own modelling tool based on frameworks

3. Metamodel, generate modelling tool skeleton, add code

4. Metamodel, generate full modelling tool over a framework

5. Metamodel, output configuration for generic modelling tool

6. Integrated modelling and metamodeling environment

� Good tools minimize resource use (few man-weeks)

– creating modelling tools and generators data-like, not code

– guide in DSM creation

– allow you to test DSM throughout domain design process

� Good tools allow DSML to change, and reflect changes:

– to modelling tools

– to design models already made

© 2009 Juha-Pekka Tolvanen / MetaCase 34

Outline

� Introduction

� The vision of Model Driven Development

� Examples and case studies

� Architecture for defining and using DSM

� Implementing DSM

– Identifying modelling concepts and rules

– Building generators

– Building a domain framework

Defining Domain-Specific Modelling Languages - Tolvanen 18

© 2009 Juha-Pekka Tolvanen / MetaCase 35

Implementing modelling
languages

� The most important asset of a DSM
environment

– application engineers use it

– generator and framework largely
invisible

� Often includes elements of familiar
modelling paradigms

– state machine

– flow model

– data structure, etc.

� Language specified as a metamodel

DOMAIN-
SPECIFIC

MODELING
LANGUAGE

DOMAIN-
SPECIFIC

CODE
GENERATOR

DSM environment

DOMAIN
FRAMEWORK

© 2009 Juha-Pekka Tolvanen / MetaCase 36

Identifying DSM constructs

� Use domain concepts directly as modelling constructs

– already known and used

– established semantics exist

– natural to operate with

– easy to understand and remember

– requirements already expressed using them

– architecture often operates on domain concepts

� Focus on expressing design space with the language

– use parameters of variation space

– keep the language simple

– try to minimize the need for modelling

– do not visualize product code!
• better to ”forget” your current code

� Apply suitable computational model(s) as a starting
point

Defining Domain-Specific Modelling Languages - Tolvanen 19

© 2009 Juha-Pekka Tolvanen / MetaCase 37

Approaches to identify concepts

� “How do I start to do DSM?”

– Hard problem for DSM beginners

– Analyzed over 20 cases to find good toolbox of
approaches

� Initial analysis suggested five approaches:

1. Domain expert’s or developer’s concepts

2. Generation output

3. Physical structure

4. Look and feel of the system built

5. Variability space

© 2009 Juha-Pekka Tolvanen / MetaCase 38

Problem domain Solution domain/ generation target Approach

Telecom services Configuration scripts 1

Insurance products J2EE 1

Business processes Rule engine language 1

Industrial automation 3 GL 1, (2)

Platform installation XML 1, (2)

Medical device configuration XML 1, (2)

Machine control 3 GL 1, 2

Call processing CPL 2, (1)

Geographic Information System 3 GL, propriety rule language, data structures 2

SIM card profiles Configuration scripts and parameters 2

Phone switch services CPL, Voice XML, 3 GL 2, (4)

eCommerce marketplaces J2EE, XML 2, (4)

Automation network C 3, 4

Crane operations C/C++ 3, (5)

SIM card applications 3 GL 4

Applications in microcontroller 8-bit assembler 4

Household appliance features 3 GL 4

Smartphone UI applications Scripting language 4

ERP configuration 3 GL 4, 5

ERP configuration 3 GL 4, 5

Handheld device applications 3 GL 4, 5

Phone UI applications C 5, (4)

Phone UI applications C++ 5, (4)

Defining Domain-Specific Modelling Languages - Tolvanen 20

© 2009 Juha-Pekka Tolvanen / MetaCase 39

1. Domain expert’s concepts

� Concepts from domain

� Mostly made without help

� Simple MoC

� Simple code generation

� OK in established domain

� Usable by non-coders

Insurance products/J2EE

© 2009 Juha-Pekka Tolvanen / MetaCase 40

2. Generation output

� Modelling constructs come from
code artefacts

� Static parts are easy

– Data structures

– Core XML elements

� Dynamic behaviour hard

– Full programming language?

– Need domain framework

� Danger: low level of abstraction

– Little productivity gain

� But works well with DSL or XML

– As opposed to generic 3GL

Internet telephony/CPL

Defining Domain-Specific Modelling Languages - Tolvanen 21

© 2009 Juha-Pekka Tolvanen / MetaCase 41

3. Physical structure

� Best for physical systems
– Networks, logistic systems,

HW architecture, train control,
factory automation, etc.

� Often static data model MoC
– Also describes connections

and dependencies

– May include behavioural
elements

� Visible domain concepts
– Easy to identify

– High level of abstraction

� Usually linked to other models
(and DSLs) to achieve more
comprehensive code
generation Automotive

HW architecture

© 2009 Juha-Pekka Tolvanen / MetaCase 42

4. Look and feel of the system

� Best for physical end product

– UI on PC, embedded, speech

� Often state machine MoC

– Also data & control flow

– Power of relationships

� Visible domain concepts

– Easy to identify

– High level of abstraction

� Domain framework hides code

– Don’t write code in models…

– …unless you really have to!

� Generators considered easy Smartphone apps/Python

Defining Domain-Specific Modelling Languages - Tolvanen 22

© 2009 Juha-Pekka Tolvanen / MetaCase 43

5. Variability space

� Language concepts capture variability space

� Modeller makes variant choices

– Composition, relationships, values

� Infinite variability space (Czarnecki)

– Not just feature tree: unbounded product family

� Used to create hardest DSM languages

– Handled most complex domains, kept modelling
simple

� Static variance easy, dynamic harder

� Consultant should be good coder

� Customer expert in his domain and code

– Consultant should also be able to program

� Predict future variability ⇒ high level of abstraction

© 2009 Juha-Pekka Tolvanen / MetaCase 44

Evaluation of the Approaches

� Only certain pairs of approaches occurred

� Hierarchy of approaches
– From less to more experienced DSM practitioners

1. Domain expert’s concepts – "we just did it"

2. Generation output
– Generic/ad hoc language not so good

– Established DSL good

3. Physical structure
– To support specifications in other DSM languages

4. Look and feel: common, easy, true DSM

5. Variability space: adds power to handle complexity
– Found in very different domains

� Best results combined 4 (L&F) and 5 (Variability)
– 4 gives objects, 5 gives relationships and properties

Defining Domain-Specific Modelling Languages - Tolvanen 23

© 2009 Juha-Pekka Tolvanen / MetaCase 45

Defining a metamodel

� Metamodel describes the modelling language

– e.g. class diagram (partially below) or any other language

© 2009 Juha-Pekka Tolvanen / MetaCase 46

Metamodel of wristwatch apps
– Example (partial):

Defining Domain-Specific Modelling Languages - Tolvanen 24

© 2009 Juha-Pekka Tolvanen / MetaCase 47

Rules [1/2]

� The domain concepts of a modelling language are
bound together with rules

� Putting the rules into the language:

– prevents creation of illegal models

– informs about missing data

– ensures model consistency

� Prefer having rules as part of metamodel to having
separate checker

– Support early error prevention and provide guidance

– But going overboard can hinder flow of modeller

© 2009 Juha-Pekka Tolvanen / MetaCase 48

Rules [2/2]

� How rules are visible to modellers

– During modelling action

– Inform when illegal design is made

– In a separate model check window

– By highlighting element(s) with errors or missing data

� When to run a separate model check

– On demand

– After certain model editing actions

– Before code generation

– Show in produced review documentation

– Before versioning etc.

Defining Domain-Specific Modelling Languages - Tolvanen 25

© 2009 Juha-Pekka Tolvanen / MetaCase 49

Defining notation [1/2]

� Vital for acceptance and usability

� Symbols can vary from boxes to photorealism

– Best to resemble closely the actual domain
representation

– Worst is having everything a box and special text to
show the difference (cf. stereotypes)

– Design information needs space: compromise

� Don’t create notation from scratch

– Use known/existing elements (and, or, start, stop etc)

� Hint: ask users to define the notation

– It is much easier to introduce their own language than
something you created

– Remember also model readers

• managers, test engineers, customers, deployment,
configuration, packaging and even sales

© 2009 Juha-Pekka Tolvanen / MetaCase 50

Defining notation [2/2]

� Consider also other representational styles

– Matrices focus on relationships, avoid line-crossings, help
identify high cohesion and low coupling

– Tables and forms show details and support sorting,
categorization, comparison

– Diagrams good in finding patterns and organizing model
elements into non-linear structures

� Multiple representations possible for the same data

– E.g. as a relationship line and as an object

– Can also make symbols and texts retrieve others' info

– Changes in one representation update the others

� Use common symbol elements to improve readability

– Show if concept is reused, has a submodel etc.

� Use symbols to indicate the state of the model

– Missing information, errors, default value is not used etc.

Defining Domain-Specific Modelling Languages - Tolvanen 26

© 2009 Juha-Pekka Tolvanen / MetaCase 51

Generator

� Generator translates the
computational model into a required
output

1. crawls through the models
→ navigation according to metamodel

2. extracts required information
→ access data in models

3. translates it into the code
→ translation semantics and rules

4. using some output format
→ possibility to define output format

DOMAIN-
SPECIFIC

MODELING
LANGUAGE

DOMAIN-
SPECIFIC

CODE
GENERATOR

DSM environment

DOMAIN
FRAMEWORK

© 2009 Juha-Pekka Tolvanen / MetaCase 52

How to design a generator

� Make the generator just for your situation

– Trying to make general purpose generator often fails

� Make generation process complete, target 100% output

– Never edit generated code: edit generator or framework

– Do you try to edit Assembler and keep C in synch with it?!

� Don’t visualize code

– Generating one class header from one class in a diagram
helps very little, if at all…

� Put domain rules up-front to the language

– Generator definition becomes easier when the input is
correct

� Keep generator and generated code as simple as
possible

– Raise variation to the modelling language

– Push low-level implementation issues to the framework

Defining Domain-Specific Modelling Languages - Tolvanen 27

© 2009 Juha-Pekka Tolvanen / MetaCase 53

Domain framework

� Provides an interface for the target
platform and programming language

� Raise the level of abstraction on the
platform side

� Achieved by atomic implementations
of commonalities and variabilities

– especially for behaviour

– implementation as templates and
components

� Include interface for the code to be
generated

– often the only needed part for static
variation (e.g. for XML schema)

DOMAIN-
SPECIFIC

MODELING
LANGUAGE

DOMAIN-
SPECIFIC

CODE
GENERATOR

DSM environment

DOMAIN
FRAMEWORK

© 2009 Juha-Pekka Tolvanen / MetaCase 54

Generators aren't just for code…

� Checking completeness and uniformity

� Configuration

� Testing and analysis

� Automated build → automating compile and
execution

� Help text

� User guides

� Documentation and review

Defining Domain-Specific Modelling Languages - Tolvanen 28

© 2009 Juha-Pekka Tolvanen / MetaCase 55

Outline

� Introduction

� The vision of Model Driven Development

� Examples and case studies

� Architecture for defining and using DSM

� Implementing DSM

� Concluding remarks

– Summary

– Q & A

© 2009 Juha-Pekka Tolvanen / MetaCase 56

Summary

� Productivity can be improved by a raise in abstraction

� DSM solves the pitfalls of CASE and UML:
metamodel and generators can be custom built

� DSM has a big organizational impact

– Experts make the DSM environment

– Other developers do model-driven development

� Building your own tool is hard, but meta-tools exist

– Meta-tools make moving to DSM feasible

� DSM makes the best possible use of your expert(s)

– And they'll love it!

Defining Domain-Specific Modelling Languages - Tolvanen 29

© 2009 Juha-Pekka Tolvanen / MetaCase 57

Free evaluation download: www.metacase.com
Build your first DSM language in an hour!

<plug>If you like it after 31 days, see 150€ Intro offer</plug>

MetaCase

Juha-Pekka Tolvanen
jpt@metacase.com

www.metacase.com/blogs

Thank you!

© 2009 Juha-Pekka Tolvanen / MetaCase 58

Literature and further links
� DSM Forum, www.dsmforum.org
� Blogs: www.metacase.com/blogs
� Brinkkemper, S., Lyytinen, K., Welke, R., Method Engineering -

Principles of method construction and tool support, Chapman & Hall,
1996

� Czarnecki, K., Eisenecker, U., Generative Programming, Methods,
Tools, and Applications, Addison-Wesley, 2000.

� Gray, J., Rossi, M., Tolvanen, J-P, (eds.) Special issue of Journal of
Visual Languages and Computing on Domain-Specific Modelling with
Visual Languages, Vol 15 (3-4), 2004

� Kelly, S., Tolvanen, J.-P., Domain-Specific Modeling: Enabling Full Code
Generation, Wiley, 2008. http://dsmbook.com

� Kieburtz, R. et al., A Software Engineering Experiment in Software
Component Generation, Proceedings of 18th International Conference
on Software Engineering, Berlin, IEEE Computer Society Press, 1996.

� Pohjonen, R., Kelly, S., Domain-Specific Modelling, Dr. Dobb's, 8, 2002
� Tolvanen, J.-P., Kelly, S., Defining Domain-Specific Modelling

Languages to Automate Product Derivation: Collected Experiences.
Procs of the 9th International Software Product Line Conference,
Springer-Verlag, 2005.

� Weiss, D., Lai, C. T. R., Software Product-line Engineering, Addison
Wesley Longman, 1999.

