
Using Lift to write a simple CMS

Scala and the web

Monday, 27 April 2009

What are Scala and Lift?

Monday, 27 April 2009
A new language that has a number of interesting features. I want to talk about some of these features, and to put them in context, I'll be using a
very small example application.

My current day job is web programming, so it was natural for me to chose a web framework as a route into using Scala; there are other ones
(Slinky), but this is the one that is generating the most buzz at the moment, and it makes

Scala

Monday, 27 April 2009
* Language
Scala is a language designed by Martin Odersky: amongst other things, he wrote the Generic Java compiler which became Sunʼs standard Java
compiler starting with v1.3 (Generics were in there, but disabled, until v1.5). Itʼs been around for a wee while: version 2.0 emerged in 2006, and
regular updates have been made since then, refining the language and the compiler. version 2.8 is on the horizon now with a number of
improvements.

* Strongly Typed
Diminishes your test burden
Better chance of getting it right first time
Better tool support

* Dynamic
Concise and expressive: absence of boilerplate: “Tasteful typing”
Interactive interpreter
Type inferencing

* Object Oriented
Classes
Multiple Inheritance via mix-in traits
Virtual functions
Overloaded functions
Can build your own value types that implement operators: just like the ints
Programming with mutable state: collections, vars

* Functional
Functions are first class objects
Pattern matching
Tail recursion (albeit limited)
Currying
Programming with immutable state: collections, vals
'For' Comprehensions

* Compiles to JVM byte code:
interoperate with other libraries (in both directions)
uses JVM debug format, and thus works with existing debuggers out-of-the-box

* MSIL
Support lags behind the JVM implementation: for the adventurous only

• A new language (v1.0 in 2003)

Scala

Monday, 27 April 2009
* Language
Scala is a language designed by Martin Odersky: amongst other things, he wrote the Generic Java compiler which became Sunʼs standard Java
compiler starting with v1.3 (Generics were in there, but disabled, until v1.5). Itʼs been around for a wee while: version 2.0 emerged in 2006, and
regular updates have been made since then, refining the language and the compiler. version 2.8 is on the horizon now with a number of
improvements.

* Strongly Typed
Diminishes your test burden
Better chance of getting it right first time
Better tool support

* Dynamic
Concise and expressive: absence of boilerplate: “Tasteful typing”
Interactive interpreter
Type inferencing

* Object Oriented
Classes
Multiple Inheritance via mix-in traits
Virtual functions
Overloaded functions
Can build your own value types that implement operators: just like the ints
Programming with mutable state: collections, vars

* Functional
Functions are first class objects
Pattern matching
Tail recursion (albeit limited)
Currying
Programming with immutable state: collections, vals
'For' Comprehensions

* Compiles to JVM byte code:
interoperate with other libraries (in both directions)
uses JVM debug format, and thus works with existing debuggers out-of-the-box

* MSIL
Support lags behind the JVM implementation: for the adventurous only

• A new language (v1.0 in 2003)

• Strongly typed

Scala

Monday, 27 April 2009
* Language
Scala is a language designed by Martin Odersky: amongst other things, he wrote the Generic Java compiler which became Sunʼs standard Java
compiler starting with v1.3 (Generics were in there, but disabled, until v1.5). Itʼs been around for a wee while: version 2.0 emerged in 2006, and
regular updates have been made since then, refining the language and the compiler. version 2.8 is on the horizon now with a number of
improvements.

* Strongly Typed
Diminishes your test burden
Better chance of getting it right first time
Better tool support

* Dynamic
Concise and expressive: absence of boilerplate: “Tasteful typing”
Interactive interpreter
Type inferencing

* Object Oriented
Classes
Multiple Inheritance via mix-in traits
Virtual functions
Overloaded functions
Can build your own value types that implement operators: just like the ints
Programming with mutable state: collections, vars

* Functional
Functions are first class objects
Pattern matching
Tail recursion (albeit limited)
Currying
Programming with immutable state: collections, vals
'For' Comprehensions

* Compiles to JVM byte code:
interoperate with other libraries (in both directions)
uses JVM debug format, and thus works with existing debuggers out-of-the-box

* MSIL
Support lags behind the JVM implementation: for the adventurous only

• A new language (v1.0 in 2003)

• Strongly typed

• …but feels dynamic

Scala

Monday, 27 April 2009
* Language
Scala is a language designed by Martin Odersky: amongst other things, he wrote the Generic Java compiler which became Sunʼs standard Java
compiler starting with v1.3 (Generics were in there, but disabled, until v1.5). Itʼs been around for a wee while: version 2.0 emerged in 2006, and
regular updates have been made since then, refining the language and the compiler. version 2.8 is on the horizon now with a number of
improvements.

* Strongly Typed
Diminishes your test burden
Better chance of getting it right first time
Better tool support

* Dynamic
Concise and expressive: absence of boilerplate: “Tasteful typing”
Interactive interpreter
Type inferencing

* Object Oriented
Classes
Multiple Inheritance via mix-in traits
Virtual functions
Overloaded functions
Can build your own value types that implement operators: just like the ints
Programming with mutable state: collections, vars

* Functional
Functions are first class objects
Pattern matching
Tail recursion (albeit limited)
Currying
Programming with immutable state: collections, vals
'For' Comprehensions

* Compiles to JVM byte code:
interoperate with other libraries (in both directions)
uses JVM debug format, and thus works with existing debuggers out-of-the-box

* MSIL
Support lags behind the JVM implementation: for the adventurous only

• A new language (v1.0 in 2003)

• Strongly typed

• …but feels dynamic

• Object-oriented

Scala

Monday, 27 April 2009
* Language
Scala is a language designed by Martin Odersky: amongst other things, he wrote the Generic Java compiler which became Sunʼs standard Java
compiler starting with v1.3 (Generics were in there, but disabled, until v1.5). Itʼs been around for a wee while: version 2.0 emerged in 2006, and
regular updates have been made since then, refining the language and the compiler. version 2.8 is on the horizon now with a number of
improvements.

* Strongly Typed
Diminishes your test burden
Better chance of getting it right first time
Better tool support

* Dynamic
Concise and expressive: absence of boilerplate: “Tasteful typing”
Interactive interpreter
Type inferencing

* Object Oriented
Classes
Multiple Inheritance via mix-in traits
Virtual functions
Overloaded functions
Can build your own value types that implement operators: just like the ints
Programming with mutable state: collections, vars

* Functional
Functions are first class objects
Pattern matching
Tail recursion (albeit limited)
Currying
Programming with immutable state: collections, vals
'For' Comprehensions

* Compiles to JVM byte code:
interoperate with other libraries (in both directions)
uses JVM debug format, and thus works with existing debuggers out-of-the-box

* MSIL
Support lags behind the JVM implementation: for the adventurous only

• A new language (v1.0 in 2003)

• Strongly typed

• …but feels dynamic

• Object-oriented

• …and also functional

Scala

Monday, 27 April 2009
* Language
Scala is a language designed by Martin Odersky: amongst other things, he wrote the Generic Java compiler which became Sunʼs standard Java
compiler starting with v1.3 (Generics were in there, but disabled, until v1.5). Itʼs been around for a wee while: version 2.0 emerged in 2006, and
regular updates have been made since then, refining the language and the compiler. version 2.8 is on the horizon now with a number of
improvements.

* Strongly Typed
Diminishes your test burden
Better chance of getting it right first time
Better tool support

* Dynamic
Concise and expressive: absence of boilerplate: “Tasteful typing”
Interactive interpreter
Type inferencing

* Object Oriented
Classes
Multiple Inheritance via mix-in traits
Virtual functions
Overloaded functions
Can build your own value types that implement operators: just like the ints
Programming with mutable state: collections, vars

* Functional
Functions are first class objects
Pattern matching
Tail recursion (albeit limited)
Currying
Programming with immutable state: collections, vals
'For' Comprehensions

* Compiles to JVM byte code:
interoperate with other libraries (in both directions)
uses JVM debug format, and thus works with existing debuggers out-of-the-box

* MSIL
Support lags behind the JVM implementation: for the adventurous only

• A new language (v1.0 in 2003)

• Strongly typed

• …but feels dynamic

• Object-oriented

• …and also functional

• Runs on the JVM

Scala

Monday, 27 April 2009
* Language
Scala is a language designed by Martin Odersky: amongst other things, he wrote the Generic Java compiler which became Sunʼs standard Java
compiler starting with v1.3 (Generics were in there, but disabled, until v1.5). Itʼs been around for a wee while: version 2.0 emerged in 2006, and
regular updates have been made since then, refining the language and the compiler. version 2.8 is on the horizon now with a number of
improvements.

* Strongly Typed
Diminishes your test burden
Better chance of getting it right first time
Better tool support

* Dynamic
Concise and expressive: absence of boilerplate: “Tasteful typing”
Interactive interpreter
Type inferencing

* Object Oriented
Classes
Multiple Inheritance via mix-in traits
Virtual functions
Overloaded functions
Can build your own value types that implement operators: just like the ints
Programming with mutable state: collections, vars

* Functional
Functions are first class objects
Pattern matching
Tail recursion (albeit limited)
Currying
Programming with immutable state: collections, vals
'For' Comprehensions

* Compiles to JVM byte code:
interoperate with other libraries (in both directions)
uses JVM debug format, and thus works with existing debuggers out-of-the-box

* MSIL
Support lags behind the JVM implementation: for the adventurous only

• A new language (v1.0 in 2003)

• Strongly typed

• …but feels dynamic

• Object-oriented

• …and also functional

• Runs on the JVM

• …and on .NET

Scala

Monday, 27 April 2009
* Language
Scala is a language designed by Martin Odersky: amongst other things, he wrote the Generic Java compiler which became Sunʼs standard Java
compiler starting with v1.3 (Generics were in there, but disabled, until v1.5). Itʼs been around for a wee while: version 2.0 emerged in 2006, and
regular updates have been made since then, refining the language and the compiler. version 2.8 is on the horizon now with a number of
improvements.

* Strongly Typed
Diminishes your test burden
Better chance of getting it right first time
Better tool support

* Dynamic
Concise and expressive: absence of boilerplate: “Tasteful typing”
Interactive interpreter
Type inferencing

* Object Oriented
Classes
Multiple Inheritance via mix-in traits
Virtual functions
Overloaded functions
Can build your own value types that implement operators: just like the ints
Programming with mutable state: collections, vars

* Functional
Functions are first class objects
Pattern matching
Tail recursion (albeit limited)
Currying
Programming with immutable state: collections, vals
'For' Comprehensions

* Compiles to JVM byte code:
interoperate with other libraries (in both directions)
uses JVM debug format, and thus works with existing debuggers out-of-the-box

* MSIL
Support lags behind the JVM implementation: for the adventurous only

“Lift borrows from the best of existing
frameworks, providing Seaside's highly
granular sessions and security, Rails' fast flash-
to-bang, Django's "more than just CRUD is
included" and Wicket's designer-friendly
templating style”

liftweb.net

Lift

Monday, 27 April 2009
Lift is a web framework written in Scala by David Pollak.

Lift

Monday, 27 April 2009
* AJAX polling
When used with Jetty: it will also work with the suspend/resume behaviour in v3.0 of the servlet specification

* ...and more
modules for a number of things, all cleanly separated out into packages: you don't pay for what you don't use.
recently hit 1.0, so itʼs suddenly stable

• COMET applications using the Scala
Actors library

Lift

Monday, 27 April 2009
* AJAX polling
When used with Jetty: it will also work with the suspend/resume behaviour in v3.0 of the servlet specification

* ...and more
modules for a number of things, all cleanly separated out into packages: you don't pay for what you don't use.
recently hit 1.0, so itʼs suddenly stable

• COMET applications using the Scala
Actors library

• AJAX polling using Jetty's continuations

Lift

Monday, 27 April 2009
* AJAX polling
When used with Jetty: it will also work with the suspend/resume behaviour in v3.0 of the servlet specification

* ...and more
modules for a number of things, all cleanly separated out into packages: you don't pay for what you don't use.
recently hit 1.0, so itʼs suddenly stable

• COMET applications using the Scala
Actors library

• AJAX polling using Jetty's continuations

• On-the-fly javascript construction using
JsCmd types

Lift

Monday, 27 April 2009
* AJAX polling
When used with Jetty: it will also work with the suspend/resume behaviour in v3.0 of the servlet specification

* ...and more
modules for a number of things, all cleanly separated out into packages: you don't pay for what you don't use.
recently hit 1.0, so itʼs suddenly stable

• COMET applications using the Scala
Actors library

• AJAX polling using Jetty's continuations

• On-the-fly javascript construction using
JsCmd types

• JQuery & blueprint.css out-of-the-box

Lift

Monday, 27 April 2009
* AJAX polling
When used with Jetty: it will also work with the suspend/resume behaviour in v3.0 of the servlet specification

* ...and more
modules for a number of things, all cleanly separated out into packages: you don't pay for what you don't use.
recently hit 1.0, so itʼs suddenly stable

• COMET applications using the Scala
Actors library

• AJAX polling using Jetty's continuations

• On-the-fly javascript construction using
JsCmd types

• JQuery & blueprint.css out-of-the-box

• …and more

Lift

Monday, 27 April 2009
* AJAX polling
When used with Jetty: it will also work with the suspend/resume behaviour in v3.0 of the servlet specification

* ...and more
modules for a number of things, all cleanly separated out into packages: you don't pay for what you don't use.
recently hit 1.0, so itʼs suddenly stable

Lift architecture

Monday, 27 April 2009
David Pollak

* Servlet API
Can be hosted by any servlet container: if you use Jetty you get extra stuff (continuations)

* Dispatch via partial functions
HTTP requests are routed to handlers using partial functions

* “View-first model”
This is to contrast it with Rails' "controller-first" model

* Multiple controllers
A web page might have several pieces of functionality on it, and thus multiple controllers.

* Snippets and bind points
A snippet declares bind points, which the snippet controller can bind data and controls to

• Servlet API

Lift architecture

Monday, 27 April 2009
David Pollak

* Servlet API
Can be hosted by any servlet container: if you use Jetty you get extra stuff (continuations)

* Dispatch via partial functions
HTTP requests are routed to handlers using partial functions

* “View-first model”
This is to contrast it with Rails' "controller-first" model

* Multiple controllers
A web page might have several pieces of functionality on it, and thus multiple controllers.

* Snippets and bind points
A snippet declares bind points, which the snippet controller can bind data and controls to

• Servlet API

• Dispatch via partial functions

Lift architecture

Monday, 27 April 2009
David Pollak

* Servlet API
Can be hosted by any servlet container: if you use Jetty you get extra stuff (continuations)

* Dispatch via partial functions
HTTP requests are routed to handlers using partial functions

* “View-first model”
This is to contrast it with Rails' "controller-first" model

* Multiple controllers
A web page might have several pieces of functionality on it, and thus multiple controllers.

* Snippets and bind points
A snippet declares bind points, which the snippet controller can bind data and controls to

• Servlet API

• Dispatch via partial functions

• "View-first" model

Lift architecture

Monday, 27 April 2009
David Pollak

* Servlet API
Can be hosted by any servlet container: if you use Jetty you get extra stuff (continuations)

* Dispatch via partial functions
HTTP requests are routed to handlers using partial functions

* “View-first model”
This is to contrast it with Rails' "controller-first" model

* Multiple controllers
A web page might have several pieces of functionality on it, and thus multiple controllers.

* Snippets and bind points
A snippet declares bind points, which the snippet controller can bind data and controls to

• Servlet API

• Dispatch via partial functions

• "View-first" model

• Multiple controllers for a single view

Lift architecture

Monday, 27 April 2009
David Pollak

* Servlet API
Can be hosted by any servlet container: if you use Jetty you get extra stuff (continuations)

* Dispatch via partial functions
HTTP requests are routed to handlers using partial functions

* “View-first model”
This is to contrast it with Rails' "controller-first" model

* Multiple controllers
A web page might have several pieces of functionality on it, and thus multiple controllers.

* Snippets and bind points
A snippet declares bind points, which the snippet controller can bind data and controls to

• Servlet API

• Dispatch via partial functions

• "View-first" model

• Multiple controllers for a single view

• No logic in view templates

Lift architecture

Monday, 27 April 2009
David Pollak

* Servlet API
Can be hosted by any servlet container: if you use Jetty you get extra stuff (continuations)

* Dispatch via partial functions
HTTP requests are routed to handlers using partial functions

* “View-first model”
This is to contrast it with Rails' "controller-first" model

* Multiple controllers
A web page might have several pieces of functionality on it, and thus multiple controllers.

* Snippets and bind points
A snippet declares bind points, which the snippet controller can bind data and controls to

• Servlet API

• Dispatch via partial functions

• "View-first" model

• Multiple controllers for a single view

• No logic in view templates

• Snippets + Bind points

Lift architecture

Monday, 27 April 2009
David Pollak

* Servlet API
Can be hosted by any servlet container: if you use Jetty you get extra stuff (continuations)

* Dispatch via partial functions
HTTP requests are routed to handlers using partial functions

* “View-first model”
This is to contrast it with Rails' "controller-first" model

* Multiple controllers
A web page might have several pieces of functionality on it, and thus multiple controllers.

* Snippets and bind points
A snippet declares bind points, which the snippet controller can bind data and controls to

• Choice of persistence model is a separate
concern

• ...although Mapper is a good starting point

Lift architecture

Monday, 27 April 2009
Mapper, Record, JPA etc.

cms

Monday, 27 April 2009

cmless

Monday, 27 April 2009
Show the CMS

• Tree of pages

cmless

Monday, 27 April 2009
Show the CMS

• Tree of pages

• Create/edit/delete

cmless

Monday, 27 April 2009
Show the CMS

• Tree of pages

• Create/edit/delete

• Page URL reflects its place in the hierarchy

cmless

Monday, 27 April 2009
Show the CMS

Sitemap

Monday, 27 April 2009
* Sitemap
This is a lift component that provides a simple way to plug-in different components of a web-app into a single navigational structure. As an example,
show the demo lift application (demo.liftweb.net <http://demo.liftweb.net/>)

It:
* displays the component parts of your application in a menu hierarchy
* plugs those components into the lift dispatch rules table for you
* provides a means to translate an HTTP request into a typed parameter that can subsequently be used in the display code

Building an entire app through a single sitemap handler is probably a bit daft, but it let me keep a lot of stuff in what place, which was handy for
exposition purposes: this isn't the path that most lift tutorials will take you down!

* Loc[T] is the trait you extend to implement this functionality

* There are two phases to the process, handled separately by two partial functions in PageLoc: mapping the URL into a possible data item, and
rendering the data or displaying an error if itʼs not there.

** Retrieval: controlled by rewrite()

* PageInfo
This is a type we provide to store the data we want to render later; in this case, PageInfo associates a path relative to our component with a Page

* Page
stores the title and content of a page: persisted to an SQL DB using lift's Mapper ORM

** Rendering

* pages.html
The template used to display a page; contains snippets for viewing the contents, create new pages, edit and delete the current one.

* snippets()
called to create each snippets content in pages.html

Sitemap Loc[T]

Monday, 27 April 2009
* Sitemap
This is a lift component that provides a simple way to plug-in different components of a web-app into a single navigational structure. As an example,
show the demo lift application (demo.liftweb.net <http://demo.liftweb.net/>)

It:
* displays the component parts of your application in a menu hierarchy
* plugs those components into the lift dispatch rules table for you
* provides a means to translate an HTTP request into a typed parameter that can subsequently be used in the display code

Building an entire app through a single sitemap handler is probably a bit daft, but it let me keep a lot of stuff in what place, which was handy for
exposition purposes: this isn't the path that most lift tutorials will take you down!

* Loc[T] is the trait you extend to implement this functionality

* There are two phases to the process, handled separately by two partial functions in PageLoc: mapping the URL into a possible data item, and
rendering the data or displaying an error if itʼs not there.

** Retrieval: controlled by rewrite()

* PageInfo
This is a type we provide to store the data we want to render later; in this case, PageInfo associates a path relative to our component with a Page

* Page
stores the title and content of a page: persisted to an SQL DB using lift's Mapper ORM

** Rendering

* pages.html
The template used to display a page; contains snippets for viewing the contents, create new pages, edit and delete the current one.

* snippets()
called to create each snippets content in pages.html

Sitemap Loc[T]Loc[T]

Monday, 27 April 2009
* Sitemap
This is a lift component that provides a simple way to plug-in different components of a web-app into a single navigational structure. As an example,
show the demo lift application (demo.liftweb.net <http://demo.liftweb.net/>)

It:
* displays the component parts of your application in a menu hierarchy
* plugs those components into the lift dispatch rules table for you
* provides a means to translate an HTTP request into a typed parameter that can subsequently be used in the display code

Building an entire app through a single sitemap handler is probably a bit daft, but it let me keep a lot of stuff in what place, which was handy for
exposition purposes: this isn't the path that most lift tutorials will take you down!

* Loc[T] is the trait you extend to implement this functionality

* There are two phases to the process, handled separately by two partial functions in PageLoc: mapping the URL into a possible data item, and
rendering the data or displaying an error if itʼs not there.

** Retrieval: controlled by rewrite()

* PageInfo
This is a type we provide to store the data we want to render later; in this case, PageInfo associates a path relative to our component with a Page

* Page
stores the title and content of a page: persisted to an SQL DB using lift's Mapper ORM

** Rendering

* pages.html
The template used to display a page; contains snippets for viewing the contents, create new pages, edit and delete the current one.

* snippets()
called to create each snippets content in pages.html

Sitemap Loc[T]Loc[T]
PageLoc extends

Loc[PageInfo]

Monday, 27 April 2009
* Sitemap
This is a lift component that provides a simple way to plug-in different components of a web-app into a single navigational structure. As an example,
show the demo lift application (demo.liftweb.net <http://demo.liftweb.net/>)

It:
* displays the component parts of your application in a menu hierarchy
* plugs those components into the lift dispatch rules table for you
* provides a means to translate an HTTP request into a typed parameter that can subsequently be used in the display code

Building an entire app through a single sitemap handler is probably a bit daft, but it let me keep a lot of stuff in what place, which was handy for
exposition purposes: this isn't the path that most lift tutorials will take you down!

* Loc[T] is the trait you extend to implement this functionality

* There are two phases to the process, handled separately by two partial functions in PageLoc: mapping the URL into a possible data item, and
rendering the data or displaying an error if itʼs not there.

** Retrieval: controlled by rewrite()

* PageInfo
This is a type we provide to store the data we want to render later; in this case, PageInfo associates a path relative to our component with a Page

* Page
stores the title and content of a page: persisted to an SQL DB using lift's Mapper ORM

** Rendering

* pages.html
The template used to display a page; contains snippets for viewing the contents, create new pages, edit and delete the current one.

* snippets()
called to create each snippets content in pages.html

Sitemap Loc[T]Loc[T]
PageLoc extends

Loc[PageInfo]

http://…/pages/foo

Monday, 27 April 2009
* Sitemap
This is a lift component that provides a simple way to plug-in different components of a web-app into a single navigational structure. As an example,
show the demo lift application (demo.liftweb.net <http://demo.liftweb.net/>)

It:
* displays the component parts of your application in a menu hierarchy
* plugs those components into the lift dispatch rules table for you
* provides a means to translate an HTTP request into a typed parameter that can subsequently be used in the display code

Building an entire app through a single sitemap handler is probably a bit daft, but it let me keep a lot of stuff in what place, which was handy for
exposition purposes: this isn't the path that most lift tutorials will take you down!

* Loc[T] is the trait you extend to implement this functionality

* There are two phases to the process, handled separately by two partial functions in PageLoc: mapping the URL into a possible data item, and
rendering the data or displaying an error if itʼs not there.

** Retrieval: controlled by rewrite()

* PageInfo
This is a type we provide to store the data we want to render later; in this case, PageInfo associates a path relative to our component with a Page

* Page
stores the title and content of a page: persisted to an SQL DB using lift's Mapper ORM

** Rendering

* pages.html
The template used to display a page; contains snippets for viewing the contents, create new pages, edit and delete the current one.

* snippets()
called to create each snippets content in pages.html

Sitemap Loc[T]Loc[T]
PageLoc extends

Loc[PageInfo]

http://…/pages/foo

rewrite

Monday, 27 April 2009
* Sitemap
This is a lift component that provides a simple way to plug-in different components of a web-app into a single navigational structure. As an example,
show the demo lift application (demo.liftweb.net <http://demo.liftweb.net/>)

It:
* displays the component parts of your application in a menu hierarchy
* plugs those components into the lift dispatch rules table for you
* provides a means to translate an HTTP request into a typed parameter that can subsequently be used in the display code

Building an entire app through a single sitemap handler is probably a bit daft, but it let me keep a lot of stuff in what place, which was handy for
exposition purposes: this isn't the path that most lift tutorials will take you down!

* Loc[T] is the trait you extend to implement this functionality

* There are two phases to the process, handled separately by two partial functions in PageLoc: mapping the URL into a possible data item, and
rendering the data or displaying an error if itʼs not there.

** Retrieval: controlled by rewrite()

* PageInfo
This is a type we provide to store the data we want to render later; in this case, PageInfo associates a path relative to our component with a Page

* Page
stores the title and content of a page: persisted to an SQL DB using lift's Mapper ORM

** Rendering

* pages.html
The template used to display a page; contains snippets for viewing the contents, create new pages, edit and delete the current one.

* snippets()
called to create each snippets content in pages.html

Sitemap Loc[T]Loc[T]
PageLoc extends

Loc[PageInfo]

http://…/pages/foo

PageInfo

rewrite

Monday, 27 April 2009
* Sitemap
This is a lift component that provides a simple way to plug-in different components of a web-app into a single navigational structure. As an example,
show the demo lift application (demo.liftweb.net <http://demo.liftweb.net/>)

It:
* displays the component parts of your application in a menu hierarchy
* plugs those components into the lift dispatch rules table for you
* provides a means to translate an HTTP request into a typed parameter that can subsequently be used in the display code

Building an entire app through a single sitemap handler is probably a bit daft, but it let me keep a lot of stuff in what place, which was handy for
exposition purposes: this isn't the path that most lift tutorials will take you down!

* Loc[T] is the trait you extend to implement this functionality

* There are two phases to the process, handled separately by two partial functions in PageLoc: mapping the URL into a possible data item, and
rendering the data or displaying an error if itʼs not there.

** Retrieval: controlled by rewrite()

* PageInfo
This is a type we provide to store the data we want to render later; in this case, PageInfo associates a path relative to our component with a Page

* Page
stores the title and content of a page: persisted to an SQL DB using lift's Mapper ORM

** Rendering

* pages.html
The template used to display a page; contains snippets for viewing the contents, create new pages, edit and delete the current one.

* snippets()
called to create each snippets content in pages.html

Sitemap Loc[T]Loc[T]
PageLoc extends

Loc[PageInfo]

http://…/pages/foo

PageInfo

Page

rewrite

Monday, 27 April 2009
* Sitemap
This is a lift component that provides a simple way to plug-in different components of a web-app into a single navigational structure. As an example,
show the demo lift application (demo.liftweb.net <http://demo.liftweb.net/>)

It:
* displays the component parts of your application in a menu hierarchy
* plugs those components into the lift dispatch rules table for you
* provides a means to translate an HTTP request into a typed parameter that can subsequently be used in the display code

Building an entire app through a single sitemap handler is probably a bit daft, but it let me keep a lot of stuff in what place, which was handy for
exposition purposes: this isn't the path that most lift tutorials will take you down!

* Loc[T] is the trait you extend to implement this functionality

* There are two phases to the process, handled separately by two partial functions in PageLoc: mapping the URL into a possible data item, and
rendering the data or displaying an error if itʼs not there.

** Retrieval: controlled by rewrite()

* PageInfo
This is a type we provide to store the data we want to render later; in this case, PageInfo associates a path relative to our component with a Page

* Page
stores the title and content of a page: persisted to an SQL DB using lift's Mapper ORM

** Rendering

* pages.html
The template used to display a page; contains snippets for viewing the contents, create new pages, edit and delete the current one.

* snippets()
called to create each snippets content in pages.html

Sitemap Loc[T]Loc[T]
PageLoc extends

Loc[PageInfo]

PageInfo

Page

page
s.html

Monday, 27 April 2009
* Sitemap
This is a lift component that provides a simple way to plug-in different components of a web-app into a single navigational structure. As an example,
show the demo lift application (demo.liftweb.net <http://demo.liftweb.net/>)

It:
* displays the component parts of your application in a menu hierarchy
* plugs those components into the lift dispatch rules table for you
* provides a means to translate an HTTP request into a typed parameter that can subsequently be used in the display code

Building an entire app through a single sitemap handler is probably a bit daft, but it let me keep a lot of stuff in what place, which was handy for
exposition purposes: this isn't the path that most lift tutorials will take you down!

* Loc[T] is the trait you extend to implement this functionality

* There are two phases to the process, handled separately by two partial functions in PageLoc: mapping the URL into a possible data item, and
rendering the data or displaying an error if itʼs not there.

** Retrieval: controlled by rewrite()

* PageInfo
This is a type we provide to store the data we want to render later; in this case, PageInfo associates a path relative to our component with a Page

* Page
stores the title and content of a page: persisted to an SQL DB using lift's Mapper ORM

** Rendering

* pages.html
The template used to display a page; contains snippets for viewing the contents, create new pages, edit and delete the current one.

* snippets()
called to create each snippets content in pages.html

Sitemap Loc[T]Loc[T]
PageLoc extends

Loc[PageInfo]

PageInfo

Page

page
s.html snippets

Monday, 27 April 2009
* Sitemap
This is a lift component that provides a simple way to plug-in different components of a web-app into a single navigational structure. As an example,
show the demo lift application (demo.liftweb.net <http://demo.liftweb.net/>)

It:
* displays the component parts of your application in a menu hierarchy
* plugs those components into the lift dispatch rules table for you
* provides a means to translate an HTTP request into a typed parameter that can subsequently be used in the display code

Building an entire app through a single sitemap handler is probably a bit daft, but it let me keep a lot of stuff in what place, which was handy for
exposition purposes: this isn't the path that most lift tutorials will take you down!

* Loc[T] is the trait you extend to implement this functionality

* There are two phases to the process, handled separately by two partial functions in PageLoc: mapping the URL into a possible data item, and
rendering the data or displaying an error if itʼs not there.

** Retrieval: controlled by rewrite()

* PageInfo
This is a type we provide to store the data we want to render later; in this case, PageInfo associates a path relative to our component with a Page

* Page
stores the title and content of a page: persisted to an SQL DB using lift's Mapper ORM

** Rendering

* pages.html
The template used to display a page; contains snippets for viewing the contents, create new pages, edit and delete the current one.

* snippets()
called to create each snippets content in pages.html

Sitemap Loc[T]Loc[T]
PageLoc extends

Loc[PageInfo]

PageInfo

Page

page
s.html snippets

Page

Monday, 27 April 2009
* Sitemap
This is a lift component that provides a simple way to plug-in different components of a web-app into a single navigational structure. As an example,
show the demo lift application (demo.liftweb.net <http://demo.liftweb.net/>)

It:
* displays the component parts of your application in a menu hierarchy
* plugs those components into the lift dispatch rules table for you
* provides a means to translate an HTTP request into a typed parameter that can subsequently be used in the display code

Building an entire app through a single sitemap handler is probably a bit daft, but it let me keep a lot of stuff in what place, which was handy for
exposition purposes: this isn't the path that most lift tutorials will take you down!

* Loc[T] is the trait you extend to implement this functionality

* There are two phases to the process, handled separately by two partial functions in PageLoc: mapping the URL into a possible data item, and
rendering the data or displaying an error if itʼs not there.

** Retrieval: controlled by rewrite()

* PageInfo
This is a type we provide to store the data we want to render later; in this case, PageInfo associates a path relative to our component with a Page

* Page
stores the title and content of a page: persisted to an SQL DB using lift's Mapper ORM

** Rendering

* pages.html
The template used to display a page; contains snippets for viewing the contents, create new pages, edit and delete the current one.

* snippets()
called to create each snippets content in pages.html

PageInfo
case class PageInfo(path: List[String]) {

 private def url(path: List[String]) = path.map(urlEncode _).mkString("/")

 val urlpath = url(path)

 lazy val page = {
 val p = PageInfo.findPage(path)
 p match {
 case Failure(msg, _, _) => S.error(urlpath + ": " + msg)
 case Empty => S.error(urlpath + ": Page not found")
 case _ => ()
 }
 p
 }

 def create(title: String): Box[Page] =
 page.flatMap(PageInfo.createPage(_, title))
}

Monday, 27 April 2009

This is PageInfo. In order to understand what this code means, we need a few scala basics…

A rubbish example

Monday, 27 April 2009

Classes
class Litter(name: String, grams: Int) {

 private val _name = name
 private val _grams = grams

 def name(): String = { _name }
 def grams(): Int = { _grams }

 override def toString(): String = _name + "(" + _grams + "g)"
}

object Main {
 def main(args: Array[String]): Unit = {
 val crisps = new Litter("crisp wrapper", 5)
 println("name " + crisps.name)
 println("weight " + crisps.grams)
 println(crisps)
 }
}

Monday, 27 April 2009

* A simple class without any behaviour
* Things to note:
* def declares a function
* val declares a variable
* the class declaration is also the initialiser (you can declare other initialisers)
* Litter derives from scala.lang.Any, which contains toString, hashCode and equals
* We need to _explicitly_ override toString: scala won’t let you override otherwise
* You don’t have to provide empty parens for method calls that don’t have any parameters
* object: scala doesn’t have static members, instead it has singleton objects. Thus Main#main above
is equivalent to a static method.

* We seem to be writing a lot for something that doesn’t do much
* First, all members occupy the same namespace, and since we can omit parens on getter-type
methods, we can replace the calls with the vals themselves: this is fine, since if we need to run code,
we can always go back to def

Classes
class Litter(val name: String, val grams: Int) {

 override def toString() = name + "(" + grams + "g)"
}

Monday, 27 April 2009

* Here’s something with some state
* vars can be reassigned; vals cannot
* Things to note:
* Calling a base class initialiser is done in the extends clause
* pickUp’s return type is Unit (as is main’s); this can be shortened (show them)
* just as with vals, we can have public vars: let’s allow maxLitterGrams to be changeable
* whoops: constraint violation! vars automatically generate a getter and a setter: we can override
these.

Classes
class Litter(val name: String, val grams: Int) {

 override def toString() = name + "(" + grams + "g)"
}

class Womble(val name: String, val maxLitterGrams: Int) {
 private var _litter: List[Litter] = Nil
 private var _litterGrams: Int = 0

 class TooMuchLitter extends RuntimeException("Too heavy for me!")

 def pickUp(litter: Litter): Unit = {
 if ((_litterGrams + litter.grams) > maxLitterGrams)
 throw new TooMuchLitter
 _litter = litter :: _litter
 _litterGrams += litter.grams
 }
}

Monday, 27 April 2009

* Here’s something with some state
* vars can be reassigned; vals cannot
* Things to note:
* Calling a base class initialiser is done in the extends clause
* pickUp’s return type is Unit (as is main’s); this can be shortened (show them)
* just as with vals, we can have public vars: let’s allow maxLitterGrams to be changeable
* whoops: constraint violation! vars automatically generate a getter and a setter: we can override
these.

Classes
class Womble(val name: String, private var _maxLitterGrams: Int) {
 private var _litter: List[Litter] = Nil
 private var _litterGrams: Int = 0

 class TooMuchLitter extends RuntimeException("Too heavy for me!")

 def pickUp(litter: Litter) = {
 if ((_litterGrams + litter.grams) > maxLitterGrams)
 throw new TooMuchLitter
 _litter = litter :: _litter
 _litterGrams += litter.grams
 }

 def maxLitterGrams = _maxLitterGrams
 def maxLitterGrams_=(grams: Int) =
 if (grams > _maxLitterGrams)
 _maxLitterGrams = grams

 override def toString =
 "Womble(" + name + ", " + maxLitterGrams +
 "g) is carrying " + _litterGrams + "g: " +
 _litter.mkString(",")
}

Monday, 27 April 2009

* Here’s something with some state
* vars can be reassigned; vals cannot
* Things to note:
* pickUp’s return type is Unit (as is main’s); this can be shortened (show them)
* just as with vals, we can have public vars: let’s allow maxLitterGrams to be changeable
* whoops: constraint violation! vars automatically generate a getter and a setter: we can override
these

Factory methods
class Litter(val name: String, val grams: Int)
val crisps = new Litter("crisp wrapper", 5)

Monday, 27 April 2009

* We want to restrict litter creation to a factory method: only that can create litter

Factory methods
class Litter(val name: String, val grams: Int)
val crisps = new Litter("crisp wrapper", 5)

class Litter private (val name: String, val grams: Int)
object Litter {
 def makeLitter(name: String, grams: Int) = new Litter(name, grams)
}
val crisps = Litter.makeLitter("crisp wrapper", 5)

Monday, 27 April 2009

* We want to restrict litter creation to a factory method: only that can create litter

Factory methods
class Litter(val name: String, val grams: Int)
val crisps = new Litter("crisp wrapper", 5)

class Litter private (val name: String, val grams: Int)
object Litter {
 def makeLitter(name: String, grams: Int) = new Litter(name, grams)
}
val crisps = Litter.makeLitter("crisp wrapper", 5)

class Litter private (val name: String, val grams: Int)
object Litter {
 def apply(name: String, grams: Int) = new Litter(name, grams)
}
val crisps = Litter("crisp wrapper", 5)

Monday, 27 April 2009

* We want to restrict litter creation to a factory method: only that can create litter

apply(…)

• apply is special

• C++’s operator()

• Python’s __call__

Monday, 27 April 2009

* apply() is special: when you ‘call’ an object, the compiler looks for an apply method with the same
arguments on the class and calls that. Compare C++’s operator() and Python’s __call__

Classes

• val

• var

• def

• Initialisers

• Factory methods

Monday, 27 April 2009

We’ve just looked at val, var and def and initialisers. Most of this was just syntactic differences to
other languages, although these differences allow a conciseness of expression without sacrificing
the ability to transparently make changes later on.

Case Classes
class Litter private (val name: String, val grams: Int)
object Litter {
 def apply(name: String, grams: Int) = new Litter(name, grams)
}
val crisps = Litter("crisp wrapper", 5)

Monday, 27 April 2009

* We can make the code for Litter even more concise
* In fact, case is (more or less) shorthand for this:
* Things to note:
* Sensible overrides of toString, hashCode and equals (deep comparison)
* unapply: what’s that? What’s an Option?
* It’s a thing: the important thing to note is, like many of the things we’ve already seen, you can
always implement it the long way round. unapply is an extractor, and it enables a class to be used
for Pattern Matching.

Case Classes
class Litter private (val name: String, val grams: Int)
object Litter {
 def apply(name: String, grams: Int) = new Litter(name, grams)
}
val crisps = Litter("crisp wrapper", 5)

case class Litter(name: String, grams: Int)

Monday, 27 April 2009

* We can make the code for Litter even more concise
* In fact, case is (more or less) shorthand for this:
* Things to note:
* Sensible overrides of toString, hashCode and equals (deep comparison)
* unapply: what’s that? What’s an Option?
* It’s a thing: the important thing to note is, like many of the things we’ve already seen, you can
always implement it the long way round. unapply is an extractor, and it enables a class to be used
for Pattern Matching.

Case Classes
class Litter private (val name: String, val grams: Int)
object Litter {
 def apply(name: String, grams: Int) = new Litter(name, grams)
}
val crisps = Litter("crisp wrapper", 5)

case class Litter(name: String, grams: Int)

class Litter(val name: String, val grams: Int) {
 override def toString = …
 override def hashCode = …
 override def equals(that: Any) = …
}
object Litter {
 def apply(name: String, grams: Int) = new Litter(name, grams)
 def unapply(litter: Litter): Option[(String, Int)] =
 Some((litter.name, litter.grams))
}

Monday, 27 April 2009

* We can make the code for Litter even more concise
* In fact, case is (more or less) shorthand for this:
* Things to note:
* Sensible overrides of toString, hashCode and equals (deep comparison)
* unapply: what’s that? What’s an Option?
* It’s a thing: the important thing to note is, like many of the things we’ve already seen, you can
always implement it the long way round. unapply is an extractor, and it enables a class to be used
for Pattern Matching.

Case Classes
class Litter private (val name: String, val grams: Int)
object Litter {
 def apply(name: String, grams: Int) = new Litter(name, grams)
}
val crisps = Litter("crisp wrapper", 5)

case class Litter(name: String, grams: Int)

class Litter(val name: String, val grams: Int) {
 override def toString = …
 override def hashCode = …
 override def equals(that: Any) = …
}
object Litter {
 def apply(name: String, grams: Int) = new Litter(name, grams)
 def unapply(litter: Litter): Option[(String, Int)] =
 Some((litter.name, litter.grams))
}

Monday, 27 April 2009

* We can make the code for Litter even more concise
* In fact, case is (more or less) shorthand for this:
* Things to note:
* Sensible overrides of toString, hashCode and equals (deep comparison)
* unapply: what’s that? What’s an Option?
* It’s a thing: the important thing to note is, like many of the things we’ve already seen, you can
always implement it the long way round. unapply is an extractor, and it enables a class to be used
for Pattern Matching.

Pattern matching

• Superficially similar to Java/C++ switch
statements

• Not just primitive types

Monday, 27 April 2009

Pattern matching
val i = 5

val s = i match {
 case 5 => "half"
 case 10 => "full"
 case something => something
}

Monday, 27 April 2009

* Things to note:
* A lower-case variable name in a case statement binds the variable to the value
* Case classes give us this power
* Guard expressions

Pattern matching
val i = 5

val s = i match {
 case 5 => "half"
 case 10 => "full"
 case something => something
}

val crisps = Litter("crisp wrapper", 5)
crisps match {
 case Litter(_, 5) => println("light litter")
 case Litter(_, 10) => println("heavier litter")
 case Litter(what, _) => println("unclassified: " + what)
}

Monday, 27 April 2009

* Things to note:
* A lower-case variable name in a case statement binds the variable to the value
* Case classes give us this power
* Guard expressions

Pattern matching
val i = 5

val s = i match {
 case 5 => "half"
 case 10 => "full"
 case something => something
}

val crisps = Litter("crisp wrapper", 5)
crisps match {
 case Litter(_, 5) => println("light litter")
 case Litter(_, 10) => println("heavier litter")
 case Litter(what, _) => println("unclassified: " + what)
}

val crisps = Litter("crisp wrapper", 7)
crisps match {
 case Litter(_, weight) if weight <= 5 => println("light litter")
 case Litter(_, weight) if weight <= 10 => println("heavier litter")
 case Litter(what, _) => println("unclassified: " + what)
}

Monday, 27 April 2009

* Things to note:
* A lower-case variable name in a case statement binds the variable to the value
* Case classes give us this power
* Guard expressions

Pattern matching
class Womble(val name: String, val maxLitterGrams: Int) {

 private var _litter: List[Litter] = Nil

 class TooMuchLitter extends RuntimeException("Too heavy for me!")

 def pickUp(litter: Litter): Unit = {
 if ((litterGrams + litter.grams) > maxLitterGrams)
 throw new TooMuchLitter
 _litter = litter :: _litter
 }

 private def litterGrams(litter: List[Litter]): Int = litter match {
 case l :: ls => l.grams + litterGrams(ls)
 case Nil => 0
 }

 def litterGrams: Int = litterGrams(_litter)
}

Monday, 27 April 2009

* Most of scala’s core classes implement pattern matching, including list
* pickUp: Point out the list cons operator
* Cons can also be used in pattern matching: the details of the mechanism are too much to go into
here
* For some reason, we’ve decided to trade-off time for space, and changed litterGrams to be a
method that iterates over the litter list.
* Things to note:
* Pattern matching
* Tail recursion

Tail recursion

• Scala supports tail recursion

• Only works with calls to the calling method

• 2.8.0 will bring the @tailrec annotation

Monday, 27 April 2009

Parameterized Types

• class Container[T](val t: T)

• Still limited by erasure

• But not as limited as Java

• Upper and lower bounds [T <: Womble]

• View bounds [T <% Womble]

• No wildcards at point of use i.e. declaration-
site variance

Monday, 27 April 2009

* Lose run-time type information through erasure
* Upper and lower bounds are sort-of equivalent to the Java <T extends Womble> syntax

Erasure
object Main {

 case class Container[T](val t: T)

 def contents(c: Any) = c match {
 case c: Container[Int] => println(c.t)
 case c: Container[String] => println(c.t)
 }

 def main(args: Array[String]) {
 val ic = new Container(1)
 val sc = new Container("foo")
 contents(ic)
 contents(sc)
 }
}

Monday, 27 April 2009

* Erasure: this is an example of using a typed pattern: it results in compiler warnings (underlined):
* non variable type-argument Int in type pattern is unchecked since it is eliminated by erasure

Erasure
object Main {

 case class Container[T](val t: T)

 def contents(c: Any) = c match {
 case c: Container[Int] => println(c.t)
 case c: Container[String] => println(c.t)
 }

 def main(args: Array[String]) {
 val ic = new Container(1)
 val sc = new Container("foo")
 contents(ic)
 contents(sc)
 }
}

TestApp.scala:5: warning: non variable type-argument Int in
type pattern is unchecked since it is eliminated by erasure
 case c: Container[Int] => println(c.t)
 ^
TestApp.scala:6: warning: non variable type-argument String in
type pattern is unchecked since it is eliminated by erasure
 case c: Container[String] => println(c.t)
 ^
TestApp.scala:6: error: unreachable code
 case c: Container[String] => println(c.t)
 ^

Monday, 27 April 2009

* Erasure: this is an example of using a typed pattern: it results in compiler warnings (underlined):
* non variable type-argument Int in type pattern is unchecked since it is eliminated by erasure

Upper/lower bounds
case class Litter(val name: String, val grams: Int)

 extends Ordered[Litter] {
 def compare(that: Litter) = grams - that.grams
}

def max[T <: Ordered[T]](elements: List[T]): T =
 elements match {
 case List() =>
 throw new IllegalArgumentException("Empty!")
 case List(x) => x
 case x :: xs =>
 val m = max(xs)
 if (x > m) x else m
}

Monday, 27 April 2009

* Things to note

Option[T]

Monday, 27 April 2009

* null is a poor choice for a result value
* it’s not obvious when it’s expected for something to return null and when it isn’t
* Get it wrong and you’ll only detect it when you get a NullPointerException, and that could happen
anywhere
* Option[T] makes it obvious

Option[T]

• Express absence of a value

Monday, 27 April 2009

* null is a poor choice for a result value
* it’s not obvious when it’s expected for something to return null and when it isn’t
* Get it wrong and you’ll only detect it when you get a NullPointerException, and that could happen
anywhere
* Option[T] makes it obvious

Option[T]

• Express absence of a value

• …without using null

Monday, 27 April 2009

* null is a poor choice for a result value
* it’s not obvious when it’s expected for something to return null and when it isn’t
* Get it wrong and you’ll only detect it when you get a NullPointerException, and that could happen
anywhere
* Option[T] makes it obvious

Option[T]

• Express absence of a value

• …without using null

def getName(id: Int): String

Monday, 27 April 2009

* null is a poor choice for a result value
* it’s not obvious when it’s expected for something to return null and when it isn’t
* Get it wrong and you’ll only detect it when you get a NullPointerException, and that could happen
anywhere
* Option[T] makes it obvious

Option[T]

• Express absence of a value

• …without using null

def getName(id: Int): String

def getName(id: Int): Option[String]

Monday, 27 April 2009

* null is a poor choice for a result value
* it’s not obvious when it’s expected for something to return null and when it isn’t
* Get it wrong and you’ll only detect it when you get a NullPointerException, and that could happen
anywhere
* Option[T] makes it obvious

Box[T]

Monday, 27 April 2009

* Box is lift’s take on Option
* It adds Failure to the possible values
* Failure can contain a chained failure/exception
*

Box[T]

• Lift’s version of Option[T]

Monday, 27 April 2009

* Box is lift’s take on Option
* It adds Failure to the possible values
* Failure can contain a chained failure/exception
*

Box[T]

• Lift’s version of Option[T]

• Full(t)

Monday, 27 April 2009

* Box is lift’s take on Option
* It adds Failure to the possible values
* Failure can contain a chained failure/exception
*

Box[T]

• Lift’s version of Option[T]

• Full(t)

• Empty

Monday, 27 April 2009

* Box is lift’s take on Option
* It adds Failure to the possible values
* Failure can contain a chained failure/exception
*

Box[T]

• Lift’s version of Option[T]

• Full(t)

• Empty

• Failure(reason)

Monday, 27 April 2009

* Box is lift’s take on Option
* It adds Failure to the possible values
* Failure can contain a chained failure/exception
*

Option and Box

• Effectively containers with a max. size of 1

• Implement conventional container methods:

• map(), flatMap() and filter()

• None/Empty/Failure values ripple up
through these methods

• getOrElse() allows getting at values safely

• (They’re monads)

Monday, 27 April 2009

Option and Box

Monday, 27 April 2009

Option and Box
scala> val some = Some(1)

Monday, 27 April 2009

Option and Box
scala> val some = Some(1)

some: Some[Int] = Some(1)

Monday, 27 April 2009

Option and Box
scala> val some = Some(1)

some: Some[Int] = Some(1)

scala> val none: Option[Int] = None

Monday, 27 April 2009

Option and Box
scala> val some = Some(1)

some: Some[Int] = Some(1)

scala> val none: Option[Int] = None

none: Option[Int] = None

Monday, 27 April 2009

Option and Box
scala> val some = Some(1)

some: Some[Int] = Some(1)

scala> val none: Option[Int] = None

none: Option[Int] = None

scala> none.map(_ + 1)

Monday, 27 April 2009

Option and Box
scala> val some = Some(1)

some: Some[Int] = Some(1)

scala> val none: Option[Int] = None

none: Option[Int] = None

scala> none.map(_ + 1)

res1: Option[Int] = None

Monday, 27 April 2009

Option and Box
scala> val some = Some(1)

some: Some[Int] = Some(1)

scala> val none: Option[Int] = None

none: Option[Int] = None

scala> none.map(_ + 1)

res1: Option[Int] = None

scala> none.map(_ + 1).map(_ + 2)

Monday, 27 April 2009

Option and Box
scala> val some = Some(1)

some: Some[Int] = Some(1)

scala> val none: Option[Int] = None

none: Option[Int] = None

scala> none.map(_ + 1)

res1: Option[Int] = None

scala> none.map(_ + 1).map(_ + 2)

res2: Option[Int] = None

Monday, 27 April 2009

Option and Box
scala> val some = Some(1)

some: Some[Int] = Some(1)

scala> val none: Option[Int] = None

none: Option[Int] = None

scala> none.map(_ + 1)

res1: Option[Int] = None

scala> none.map(_ + 1).map(_ + 2)

res2: Option[Int] = None

scala> some.map(_ + 1).map(_ + 2)

Monday, 27 April 2009

Option and Box
scala> val some = Some(1)

some: Some[Int] = Some(1)

scala> val none: Option[Int] = None

none: Option[Int] = None

scala> none.map(_ + 1)

res1: Option[Int] = None

scala> none.map(_ + 1).map(_ + 2)

res2: Option[Int] = None

scala> some.map(_ + 1).map(_ + 2)

res3: Option[Int] = Some(4)

Monday, 27 April 2009

case class PageInfo(path: List[String]) {
 private def url(path: List[String]) = path.map(urlEncode _).mkString("/")

 val urlpath = url(path)

 lazy val page = {
 val p = PageInfo.findPage(path)
 p match {
 case Failure(msg, _, _) => S.error(urlpath + ": " + msg)
 case Empty => S.error(urlpath + ": Page not found")
 case _ => ()
 }
 p
 }

 def create(title: String): Box[Page] =
 page.flatMap(PageInfo.createPage(_, title))
}

PageInfo

Monday, 27 April 2009

* Things to note:
path is a constructor param
urlpath is part of the initializer
page uses pattern matching on a Box returned by a findPage method
create: creates a child of the current page and returns it as a Box[Page]; if page is None, then
createPage won’t be called.

First-class functions

• Function literals:

• (x: Int) => x + 1

• (_: Int) + 1

• val inc: (Int) => Int = _ + 1

• val inc: Function[Int, Int] = _ + 1

Monday, 27 April 2009

* Already seen the inc _ form in Box and Option

First-class functions

• Partially applied functions:

• def inc(x: Int) = x + 1

inc _

• def sum(x: Int, y: Int) = x + y

val inc = sum(_: Int, 1)

Monday, 27 April 2009

Closures

• Behave as you would (hopefully) expect

• Referring to an in-scope variable in a function
body closes over it:

val a = 1
val inca = (x: Int) => x + a
List(1, 2, 3).filter(_ == a)

• Closes over the instance not the value

Monday, 27 April 2009

Closures

• Close over the instance not the value

• Can close over vars:

var a = 1
val inca = (x: Int) => x + a
inca(1) == 2
a = 2
inca(1) == 3

Monday, 27 April 2009

Partial functions

• A function that may not be defined for all
possible input values

• Case sequences are function literals

• val pf: Int => Int = { case 2 => 2 }

• pf(3) throws a MatchError

• val pf: PartialFunction[Int, Int] = { case 2 => 2 }

• pf.isDefinedAt(3) returns false

Monday, 27 April 2009

Getting the data

Monday, 27 April 2009

class PageLoc extends Loc[PageInfo] {
 val name = "pages"
 // ...
 override val rewrite: LocRewrite =
 Full(NamedPF("Pages rewrite") {
 case RewriteRequest(ParsePath(head :: tail, _, _, _), _, httpRequest)
 if head == name =>
 (RewriteResponse(ParsePath(head :: Nil, "", true, false),
 Map.empty, true),
 PageInfo(tail))
 })
 // ...
}

rewrite

Monday, 27 April 2009

* ParamType is the type we want to store our retrieved data in, which in our case is PageInfo
* This is a partial function: note the guard on the case: it’s defined for head == name
* This handles the mapping of an HTTP request to something concrete i.e. an instance of PageInfo

class PageLoc extends Loc[PageInfo] {
 val name = "pages"
 // ...
 override val rewrite: LocRewrite =
 Full(NamedPF("Pages rewrite") {
 case RewriteRequest(ParsePath(head :: tail, _, _, _), _, httpRequest)
 if head == name =>
 (RewriteResponse(ParsePath(head :: Nil, "", true, false),
 Map.empty, true),
 PageInfo(tail))
 })
 // ...
}

rewrite

case class ParsePath(partPath: List[String], suffix: String,
 absolute: Boolean, endSlash: Boolean)
case class RewriteRequest(path: ParsePath, requestType: RequestType,
 httpRequest: HttpServletRequest)
case class RewriteResponse(path: ParsePath, params: Map[String, String],
 stopRewriting: Boolean)
type LocRewrite =
 Box[PartialFunction[RewriteRequest, (RewriteResponse, ParamType)]]

Monday, 27 April 2009

* ParamType is the type we want to store our retrieved data in, which in our case is PageInfo
* This is a partial function: note the guard on the case: it’s defined for head == name
* This handles the mapping of an HTTP request to something concrete i.e. an instance of PageInfo

Displaying our results

Monday, 27 April 2009

<lift:surround with="default" at="content">
 <h1>Pages</h1>
 <lift:read>
 <p><read:ancestors/></p>
 <h2><read:title/></h2>
 <p><read:children/></p>
 <p><read:content/></p>
 </lift:read>
 <lift:create form="POST">
 <create:title/>
 <create:submit/>
 </lift:create>
 <lift:update form="POST">
 <update:content/>

 <update:submit/>
 </lift:update>
 <lift:delete form="POST">
 <delete:submit/>
 </lift:delete>
</lift:surround>

pages.html

Monday, 27 April 2009

 override def snippets: SnippetTest = {
 case ("read", Full(pageInfo)) => read(pageInfo, _)
 case ("create", Full(pageInfo)) => create(pageInfo, _)
 case ("update", Full(pageInfo)) => update(pageInfo, _)
 case ("delete", Full(pageInfo)) => delete(pageInfo, _)
 }

 private def read(pageInfo: PageInfo, content: NodeSeq): NodeSeq = {
 def join[A](xs: List[A], sep: A): List[A] = ...
 def children(page: Page) = ...
 def ancestors: List[Elem] = ...

 pageInfo.page match {
 case Full(page) =>
 bind("read", content,
 "title" -> Text(page.title.is),
 "ancestors" -> join(ancestors, Text(" >> ")),
 "children" -> join(children(page), Text(" :: ")),
 "content" -> Text(page.content.is))
 case _ => NodeSeq.Empty
 }
 }

Monday, 27 April 2009

* Things to note:
* read()
 * nested functions
* lift#bind(snippet-name, contents, BindParam*)

bind
def bind(namespace: String, xml: NodeSeq,
 params: BindParam*): NodeSeq

• binds xml items in the specified namespace

• BindParam associates a snippet parameter
with a replacement

• “a” -> replacement is an overloaded function
on SuperArrowAssoc, which has an implicit
conversion from string

Monday, 27 April 2009

mvn -o scala:console
scala> import net.liftweb.util.BindHelpers._
scala> bind("user", <user:hello>foo</user:hello>, "hello" -> <h1>bar</h1>)
bind("user", <user:hello>foo</user:hello>, "hello" -> <h1>bar</h1>)
res2: scala.xml.NodeSeq = <h1>bar</h1>

 def join[A](xs: List[A], sep: A): List[A] = xs match {
 case Nil => Nil
 case x :: Nil => x :: Nil
 case x :: xs => x :: sep :: join(xs, sep)
 }

 def children(page: Page) =
 for (c <- page.children)
 yield
 { c.title.is }

 def ancestors: List[Elem] = {
 import scala.collection.mutable.ListBuffer
 val path = new ListBuffer[String]()
 val home = {PageInfo.home.title.is}
 val rest = if (pageInfo.path.size > 1) {
 for (a <- pageInfo.path.dropRight(1)) yield {
 path += a
 {a}
 }
 }
 else {
 Nil
 }
 home :: rest
 }

Monday, 27 April 2009

* Things to note:
* join is functional and recursive
* children is functional
* ancestors is imperative (I was going to make it functional, but thought it was worth leaving in as
an example)

• bind() is also used to bind input data
 private object createTitle extends RequestVar("")

 private def create(pageInfo: PageInfo, content: NodeSeq): NodeSeq =
 pageInfo.page match {
 case Full(page) =>
 bind("create", content,
 "title" -> SHtml.text(createTitle.is, createTitle(_)),
 "submit" -> SHtml.submit("Create a new page",
 { () => doCreate(pageInfo,
 createTitle.is) }))
 case _ => NodeSeq.Empty
 }

bind & forms

Monday, 27 April 2009

SHtml.text
private object createTitle extends RequestVar("")
SHtml.text(createTitle.is, createTitle(_))

• createTitle is like a ThreadLocal, but per
Request

• Registers createTitle(_) as a callback in
session state

• Generates <input ... id="callback-id"/>

• POST request looks up the callback and
executes it

Monday, 27 April 2009

• Scala:
• Conciseness of classes
• Power of pattern matching
• Flexibility of functions

• Lift:
• Partial functions for dispatching
• Model: Simple Mapper ORM
• Views: Snippets
• Controller: bind()

What have I talked
about?

Monday, 27 April 2009

• Traits
• XML literals

• Duck typing using anonymous classes
• Implicits
• Co/contravariance specification at declaration point enforces

LSP

• DSL-supporting features

• operator definition

• method call syntax doesn't require dots, and single argument
method calls can be made without parens

• ScalaTest & ScalaSpec’s BDD specs

What haven’t I talked
about?

Monday, 27 April 2009

...just a small selection of language features.
There’s also an increasing number of libraries: the actors library, combinator parser, scalaz, scalax
...and tools: ScalaCheck (a port of Haskell’s QuickCheck)

Scala 2.8.0

• Redesigned collection libraries (mostly
backwards compatible)

• Redesigned combinator parser library

• Named & default parameters

• Continuations

• Revamped REPL, including completion

• Source compatible with old code (but not binary)

Monday, 27 April 2009

http://xkcd.com/568/
Monday, 27 April 2009

object Lunar extends Baysick {
 def main(args:Array[String]) = {
 10 PRINT "Welcome to Baysick Lunar Lander v0.9"
 20 LET ('dist := 100)
 30 LET ('v := 1)
 40 LET ('fuel := 1000)
 50 LET ('mass := 1000)

 60 PRINT "You are drifting towards the moon."
 70 PRINT "You must decide how much fuel to burn."
 80 PRINT "To accelerate enter a positive number"
 90 PRINT "To decelerate a negative"

 100 PRINT "Distance " % 'dist % "km, " % "Velocity " % 'v % "km/s, " % "Fuel " % 'fuel
 110 INPUT 'burn
 120 IF ABS('burn) <= 'fuel THEN 150
 130 PRINT "You don't have that much fuel"
 140 GOTO 100
 150 LET ('v := 'v + 'burn * 10 / ('fuel + 'mass))
 160 LET ('fuel := 'fuel - ABS('burn))
 170 LET ('dist := 'dist - 'v)
 180 IF 'dist > 0 THEN 100
 190 PRINT "You have hit the surface"
 200 IF 'v < 3 THEN 240
 210 PRINT "Hit surface too fast (" % 'v % ")km/s"
 220 PRINT "You Crashed!"
 230 GOTO 250
 240 PRINT "Well done"

 250 END

 RUN
 }
}

Monday, 27 April 2009

Find out more

• http://www.scala-lang.org

• http://www.liftweb.net

• Programming in Scala Odersky, Spoon, Venners
Artima 2008

• Monads are Elephants James Iry
http://james-iry.blogspot.com/2007/09/monads-are-elephants-part-1.html

Monday, 27 April 2009

