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Conclusions
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• Eight years later, systematic design automation using
policies is still elusive

• In spite of all the snazzy features acquired by
languages

• Some progress has been made
• Yet too many designs require high implementation effort
• Nirvana = Static Introspection + Code generation



This Talk
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• Review of Policy-Based Design
• Red Code, Green Code
• Red Data, Green Data
• Null Object, Black Holes, and White Holes
• Conclusions



Policy-Based Design Refresher
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What is PBD? Simply Put:
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1. Take a design offering various tradeoffs

2. Separate tradeoffs in orthogonal concerns

3. Encode each concern into a specialized type (policy)
obeying a static interface

4. Write a host class assembling the policies
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1. Take a design offering various tradeoffs

2. Separate tradeoffs in orthogonal concerns

3. Encode each concern into a specialized type (policy)
obeying a static interface

4. Write a host class assembling the policies

5. . . .

6. Profit!



PBD Success Stories
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• Smart pointers

• Strings, arrays, containers

• Certain Pattern Automation: Factory, Visitor, Observer,
. . .

• PBD does not “implement” patterns

• PBD does use and apply patterns in finding the right
decomposition

• Recent work: “Red Code, Green Code” by Scott Meyers



PBD Success Stories

c© 2009 Andrei Alexandrescu 6 / 45

• Smart pointers

• Strings, arrays, containers

• Certain Pattern Automation: Factory, Visitor, Observer,
. . .

• PBD does not “implement” patterns

• PBD does use and apply patterns in finding the right
decomposition

• Recent work: “Red Code, Green Code” by Scott
Meyers



Red Code, Green Code
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Red Code, Green Code
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• Express code features as types

• Portable code, thread-safe code,

exception-safe code, reviewed code. . .

• Features are transitive

Portable code should only call portable

code

• Features are combinable

Portable and exception-safe code

• Features are are contravariant

More features <: Less features



Defining Features
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struct ThreadSafe {};

struct ExceptionSafe {};

struct Portable {};

typedef boost::mpl::vector<

ThreadSafe, ExceptionSafe

> TESafe;

template<class Features> struct MakeFeatures

{

...

}



Transitive & Contravariant
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• Say a function fulfills certain features

• It should only call functions fulfilling those

features

• Plus possibly other, unrelated features

• Please note: this is exactly the opposite of

inheritance

• Inheritance: you can pass a derived as a base

• Features: you can pass a base as a derived!



Combinable
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• Arbitrary number of code features can be

created and used

• They can be arbitrarily superposed

• Superposition result does not depend on

order

• Please note: this is quite the opposite of

templates

• Templates: order of arguments is essential

• Features: order of arguments is irrelevant



Using a Set of Features
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void f(int x, double y,

MakeFeatures<TESafe>::type features)

{

... // normal

}



Using a Set of Features (cont’d)
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typedef boost::mpl::vector<

ThreadSafe, ExceptionSafe, Portable

> TEPSafe;

void g(MakeFeatures<TEPSafe>::type features



Enforcing Features’ Structure (+)
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void f(int x, double y,

MakeFeatures<TESafe>::type features)

{

...

g(features); // fine

...

}

• g is thread-safe and exception-safe, and also portable
• Contravariance of code features



Enforcing Features’ Structure (−)
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void g(MakeFeatures<TEPSafe>::type features

{

int xVal, yVal;

...

f(xVal, yVal, features);// error!

...

}

• f does not respect the Portable requirement
• Can’t call non-portable code from portable code



Actual Error Message (Literary Klingon)
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articlecode.cpp: In function ’void g(

CodeFeatures::Features<

boost::mpl::v_item<

CodeFeatures::Portable

, boost::mpl::v_item<

CodeFeatures::ExceptionSafe

, boost::mpl::v_item<

CodeFeatures::ThreadSafe, boost::mpl::vector0<mpl_::na>

, 0

>, 0

>, 0

>

>

)’:

articlecode.cpp:32: error: conversion from ’CodeFeatures::Features<

boost::mpl::v_item<

CodeFeatures::Portable

, boost::mpl::v_item<

CodeFeatures::ExceptionSafe

, boost::mpl::v_item<

CodeFeatures::ThreadSafe, boost::mpl::vector0<mpl_::na>, 0

>, 0

>, 0

>

>’ to non-scalar type ’CodeFeatures::Features<

boost::mpl::v_item<

CodeFeatures::ExceptionSafe

, boost::mpl::v_item<

CodeFeatures::ThreadSafe, boost::mpl::vector0<mpl_::na>, 0

<, 0

>

>’ requested



Remark
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If there’s any hope to automate designs, custom

error messages are a must.



Status
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• C++: no

• D: yes (static assert)

• C++1x: yes (static_assert)



Superposition
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• Define a total ordering over features (types)
• MakeFeatures sorts by that order

⇒ Initial order becomes irrelevant
• How to do that?



Scott’s Solution
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1 namespace CodeFeatures {

2 namespace mpl = boost::mpl;

3 using mpl::_1;

4 using mpl::_2;

5 template<typename S, typename T>

6 struct IndexOf:

7 mpl::distance<typename mpl::begin<S>::type,

8 typename mpl::find<S, T>::type>

9 {};

10 template<typename Unordered>

11 struct Order:

12 mpl::sort<Unordered,

13 mpl::less<IndexOf<AllCodeFeatures, _1>,

14 IndexOf<AllCodeFeatures, _2> > >

15 {};

16 template<typename CF>

17 struct MakeFeatures {

18 typedef

19 Features<typename mpl::copy<typename Order<CF>::type,

20 mpl::back_inserter<mpl::vector0<> > >::type>

21 type;

22 };

23 }



c© 2009 Andrei Alexandrescu 21 / 45

(You didn’t see the half of it.)



Scott’s Solution, Summarized
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• Define a type vector containing all features
• Sort by a feature’s position in that vector
• Extremely coupled: new features must be added to “the

registry”
• Mechanics-heavy



Total Ordering of Types
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Three possibilities:

1. Manually associate integral IDs with properties; sort by
ID

2. Sort by type name

C++ does not allow that

3. Express properties as strings

D can do string manipulation statically

C++ can too, if all strings are 8 characters



Contravariance
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Remark
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To automate design, compile-time string

processing is a must.



Status
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• C++: no

• D: yes (static assert)

• C++1x: yes (static_assert)



Red Data, Green Data
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Typing the Untypable
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• Certain properties are difficult to encode as types

Example: “array is sorted”

Example: “array is normalized”

Example: “array has no negative elements”

• Could define SortedArray, NormArray,
NonNegativeArray

• How about SortedNormArray?



More Examples
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• String has only capital letters

• Array of strings, each no more than 6 characters

• String is normalized

• String is tainted

• Object is unaliased



Properties
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• These properties are seldom worth defining types for

• Yet applications routinely make various assumptions
about data

• Properties may superpose ⇒ combinatorial explosion

• Checking throughout is often not an option

Should binary_search call is_sorted?



Assume* Shims
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template<class T>

struct AssumeNormalized {

T& payload;

};

template <class T>

AssumeNormalized<T>

assumeNormalized(T & input);



Using an Assume* Shim
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void

entropy(AssumeNormalized<vector<double>> v) {

... use v.payload ...

}

// call

vector<double> v;

normalize(v);

entropy(assumeNormalized(v));



Composing Properties
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• How about a vector that’s positive and

normalized?

• . . . positive, normalized, sorted?

• . . . positive, normalized, sorted, and not

degenerate?



Composing Properties
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• How about a vector that’s positive and

normalized?

• . . . positive, normalized, sorted?

• . . . positive, normalized, sorted, and not

degenerate?

• Combinatorial explosion very similar to design

choices in policy-based design!



Multiple Parameters to the Rescue (usage)
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struct Normalized;

struct Positive;

// usage

vector<float> v;

fun(Assume<Normalized, Positive>::on(v));



Multiple Parameters to the Rescue (impl.)
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template<typename T, typename... Ps>

struct AssumeImpl {

typedef Typelist<Ps...> Properties;

T& payload;

};

template<typename... Ps>

struct Assume {

AssumeImpl<T, Ps...> on(T& v);

};



Multiple Parameters to the Rescue?

c© 2009 Andrei Alexandrescu 36 / 45

• Assume<A, B>::on(v) and
Assume<B, A>::on(v) are distinct types!

• If a function expects them in the A, B order and you
have them in B, A order, the call will not go through

• What to do?



Multiple Parameters to the Rescue?
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• Assume<A, B>::on(v) and
Assume<B, A>::on(v) are distinct types!

• If a function expects them in the A, B order and you
have them in B, A order, the call will not go through

• What to do?

• We need to define a total ordering over possible
properties



Designs That Should
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Null Object Pattern
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• Replace a null pointer with a valid object that does
nothing

• Defined behavio(u)r: no more checking for null

• Useful in prototyping

• Useful for e.g. “null stream,” stub observers, terminators



Black Holes & White Holes
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• One approach: “absorb” all calls without doing
anything: Black Hole

• Another: reject every operation by throwing an
exception White Hole

• Both are useful in applications

Standalone

Base classes (implement a fraction of an interface)



Implementation
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interface Foobar {

virtual void foo(int);

virtual int bar(string);

}

class BlackHoleFoobar : Foobar {

virtual void foo(int) {}

virtual int bar(string) { return int{}; }

}

class WhiteHoleFoobar : Foobar {

virtual void foo(int) {

throw exception("Unimplemented: foo");

}

virtual int bar(string) {

throw exception("Unimplemented: bar");

}

}
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That’s awful!



Automating Null Objects

c© 2009 Andrei Alexandrescu 42 / 45

• Such code should be automatically available

BlackHole<Foobar>

WhiteHole<Foobar>

• Should work with both interfaces and classes

• Should be as fast as the hand-written implementation

• What do we need to make it work?



We Need
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• Compile-time introspection

Enumerate members of a class/interface

• Compile-time code generation

For each member found, generate customized code

• No popular compiled language offers both
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To Conclude (again)
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• Design Automation is still an elusive goal

• Like the STL: not designing the language for

design automation ⇒ no design automation

will be achieved

• Progress has been made

• Much more is to be done
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