
c© 2009 Andrei Alexandrescu 1 / 45

Cranking Policies Up

Andrei Alexandrescu

Conclusions

c© 2009 Andrei Alexandrescu 2 / 45

• Eight years later, systematic design automation using
policies is still elusive

• In spite of all the snazzy features acquired by
languages

• Some progress has been made
• Yet too many designs require high implementation effort
• Nirvana = Static Introspection + Code generation

This Talk

c© 2009 Andrei Alexandrescu 3 / 45

• Review of Policy-Based Design
• Red Code, Green Code
• Red Data, Green Data
• Null Object, Black Holes, and White Holes
• Conclusions

Policy-Based Design Refresher

c© 2009 Andrei Alexandrescu 4 / 45

What is PBD? Simply Put:

c© 2009 Andrei Alexandrescu 5 / 45

1. Take a design offering various tradeoffs

2. Separate tradeoffs in orthogonal concerns

3. Encode each concern into a specialized type (policy)
obeying a static interface

4. Write a host class assembling the policies

What is PBD? Simply Put:

c© 2009 Andrei Alexandrescu 5 / 45

1. Take a design offering various tradeoffs

2. Separate tradeoffs in orthogonal concerns

3. Encode each concern into a specialized type (policy)
obeying a static interface

4. Write a host class assembling the policies

5. . . .

6. Profit!

PBD Success Stories

c© 2009 Andrei Alexandrescu 6 / 45

• Smart pointers

• Strings, arrays, containers

• Certain Pattern Automation: Factory, Visitor, Observer,
. . .

• PBD does not “implement” patterns

• PBD does use and apply patterns in finding the right
decomposition

• Recent work: “Red Code, Green Code” by Scott Meyers

PBD Success Stories

c© 2009 Andrei Alexandrescu 6 / 45

• Smart pointers

• Strings, arrays, containers

• Certain Pattern Automation: Factory, Visitor, Observer,
. . .

• PBD does not “implement” patterns

• PBD does use and apply patterns in finding the right
decomposition

• Recent work: “Red Code, Green Code” by Scott
Meyers

Red Code, Green Code

c© 2009 Andrei Alexandrescu 7 / 45

Red Code, Green Code

c© 2009 Andrei Alexandrescu 8 / 45

• Express code features as types

• Portable code, thread-safe code,

exception-safe code, reviewed code. . .

• Features are transitive

Portable code should only call portable

code

• Features are combinable

Portable and exception-safe code

• Features are are contravariant

More features <: Less features

Defining Features

c© 2009 Andrei Alexandrescu 9 / 45

struct ThreadSafe {};

struct ExceptionSafe {};

struct Portable {};

typedef boost::mpl::vector<

ThreadSafe, ExceptionSafe

> TESafe;

template<class Features> struct MakeFeatures

{

...

}

Transitive & Contravariant

c© 2009 Andrei Alexandrescu 10 / 45

• Say a function fulfills certain features

• It should only call functions fulfilling those

features

• Plus possibly other, unrelated features

• Please note: this is exactly the opposite of

inheritance

• Inheritance: you can pass a derived as a base

• Features: you can pass a base as a derived!

Combinable

c© 2009 Andrei Alexandrescu 11 / 45

• Arbitrary number of code features can be

created and used

• They can be arbitrarily superposed

• Superposition result does not depend on

order

• Please note: this is quite the opposite of

templates

• Templates: order of arguments is essential

• Features: order of arguments is irrelevant

Using a Set of Features

c© 2009 Andrei Alexandrescu 12 / 45

void f(int x, double y,

MakeFeatures<TESafe>::type features)

{

... // normal

}

Using a Set of Features (cont’d)

c© 2009 Andrei Alexandrescu 13 / 45

typedef boost::mpl::vector<

ThreadSafe, ExceptionSafe, Portable

> TEPSafe;

void g(MakeFeatures<TEPSafe>::type features

Enforcing Features’ Structure (+)

c© 2009 Andrei Alexandrescu 14 / 45

void f(int x, double y,

MakeFeatures<TESafe>::type features)

{

...

g(features); // fine

...

}

• g is thread-safe and exception-safe, and also portable
• Contravariance of code features

Enforcing Features’ Structure (−)

c© 2009 Andrei Alexandrescu 15 / 45

void g(MakeFeatures<TEPSafe>::type features

{

int xVal, yVal;

...

f(xVal, yVal, features);// error!

...

}

• f does not respect the Portable requirement
• Can’t call non-portable code from portable code

Actual Error Message (Literary Klingon)

c© 2009 Andrei Alexandrescu 16 / 45

articlecode.cpp: In function ’void g(

CodeFeatures::Features<

boost::mpl::v_item<

CodeFeatures::Portable

, boost::mpl::v_item<

CodeFeatures::ExceptionSafe

, boost::mpl::v_item<

CodeFeatures::ThreadSafe, boost::mpl::vector0<mpl_::na>

, 0

>, 0

>, 0

>

>

)’:

articlecode.cpp:32: error: conversion from ’CodeFeatures::Features<

boost::mpl::v_item<

CodeFeatures::Portable

, boost::mpl::v_item<

CodeFeatures::ExceptionSafe

, boost::mpl::v_item<

CodeFeatures::ThreadSafe, boost::mpl::vector0<mpl_::na>, 0

>, 0

>, 0

>

>’ to non-scalar type ’CodeFeatures::Features<

boost::mpl::v_item<

CodeFeatures::ExceptionSafe

, boost::mpl::v_item<

CodeFeatures::ThreadSafe, boost::mpl::vector0<mpl_::na>, 0

<, 0

>

>’ requested

Remark

c© 2009 Andrei Alexandrescu 17 / 45

If there’s any hope to automate designs, custom

error messages are a must.

Status

c© 2009 Andrei Alexandrescu 18 / 45

• C++: no

• D: yes (static assert)

• C++1x: yes (static_assert)

Superposition

c© 2009 Andrei Alexandrescu 19 / 45

• Define a total ordering over features (types)
• MakeFeatures sorts by that order

⇒ Initial order becomes irrelevant
• How to do that?

Scott’s Solution

c© 2009 Andrei Alexandrescu 20 / 45

1 namespace CodeFeatures {

2 namespace mpl = boost::mpl;

3 using mpl::_1;

4 using mpl::_2;

5 template<typename S, typename T>

6 struct IndexOf:

7 mpl::distance<typename mpl::begin<S>::type,

8 typename mpl::find<S, T>::type>

9 {};

10 template<typename Unordered>

11 struct Order:

12 mpl::sort<Unordered,

13 mpl::less<IndexOf<AllCodeFeatures, _1>,

14 IndexOf<AllCodeFeatures, _2> > >

15 {};

16 template<typename CF>

17 struct MakeFeatures {

18 typedef

19 Features<typename mpl::copy<typename Order<CF>::type,

20 mpl::back_inserter<mpl::vector0<> > >::type>

21 type;

22 };

23 }

c© 2009 Andrei Alexandrescu 21 / 45

(You didn’t see the half of it.)

Scott’s Solution, Summarized

c© 2009 Andrei Alexandrescu 22 / 45

• Define a type vector containing all features
• Sort by a feature’s position in that vector
• Extremely coupled: new features must be added to “the

registry”
• Mechanics-heavy

Total Ordering of Types

c© 2009 Andrei Alexandrescu 23 / 45

Three possibilities:

1. Manually associate integral IDs with properties; sort by
ID

2. Sort by type name

C++ does not allow that

3. Express properties as strings

D can do string manipulation statically

C++ can too, if all strings are 8 characters

Contravariance

c© 2009 Andrei Alexandrescu 24 / 45

Remark

c© 2009 Andrei Alexandrescu 25 / 45

To automate design, compile-time string

processing is a must.

Status

c© 2009 Andrei Alexandrescu 26 / 45

• C++: no

• D: yes (static assert)

• C++1x: yes (static_assert)

Red Data, Green Data

c© 2009 Andrei Alexandrescu 27 / 45

Typing the Untypable

c© 2009 Andrei Alexandrescu 28 / 45

• Certain properties are difficult to encode as types

Example: “array is sorted”

Example: “array is normalized”

Example: “array has no negative elements”

• Could define SortedArray, NormArray,
NonNegativeArray

• How about SortedNormArray?

More Examples

c© 2009 Andrei Alexandrescu 29 / 45

• String has only capital letters

• Array of strings, each no more than 6 characters

• String is normalized

• String is tainted

• Object is unaliased

Properties

c© 2009 Andrei Alexandrescu 30 / 45

• These properties are seldom worth defining types for

• Yet applications routinely make various assumptions
about data

• Properties may superpose ⇒ combinatorial explosion

• Checking throughout is often not an option

Should binary_search call is_sorted?

Assume* Shims

c© 2009 Andrei Alexandrescu 31 / 45

template<class T>

struct AssumeNormalized {

T& payload;

};

template <class T>

AssumeNormalized<T>

assumeNormalized(T & input);

Using an Assume* Shim

c© 2009 Andrei Alexandrescu 32 / 45

void

entropy(AssumeNormalized<vector<double>> v) {

... use v.payload ...

}

// call

vector<double> v;

normalize(v);

entropy(assumeNormalized(v));

Composing Properties

c© 2009 Andrei Alexandrescu 33 / 45

• How about a vector that’s positive and

normalized?

• . . . positive, normalized, sorted?

• . . . positive, normalized, sorted, and not

degenerate?

Composing Properties

c© 2009 Andrei Alexandrescu 33 / 45

• How about a vector that’s positive and

normalized?

• . . . positive, normalized, sorted?

• . . . positive, normalized, sorted, and not

degenerate?

• Combinatorial explosion very similar to design

choices in policy-based design!

Multiple Parameters to the Rescue (usage)

c© 2009 Andrei Alexandrescu 34 / 45

struct Normalized;

struct Positive;

// usage

vector<float> v;

fun(Assume<Normalized, Positive>::on(v));

Multiple Parameters to the Rescue (impl.)

c© 2009 Andrei Alexandrescu 35 / 45

template<typename T, typename... Ps>

struct AssumeImpl {

typedef Typelist<Ps...> Properties;

T& payload;

};

template<typename... Ps>

struct Assume {

AssumeImpl<T, Ps...> on(T& v);

};

Multiple Parameters to the Rescue?

c© 2009 Andrei Alexandrescu 36 / 45

• Assume<A, B>::on(v) and
Assume<B, A>::on(v) are distinct types!

• If a function expects them in the A, B order and you
have them in B, A order, the call will not go through

• What to do?

Multiple Parameters to the Rescue?

c© 2009 Andrei Alexandrescu 36 / 45

• Assume<A, B>::on(v) and
Assume<B, A>::on(v) are distinct types!

• If a function expects them in the A, B order and you
have them in B, A order, the call will not go through

• What to do?

• We need to define a total ordering over possible
properties

Designs That Should

c© 2009 Andrei Alexandrescu 37 / 45

Null Object Pattern

c© 2009 Andrei Alexandrescu 38 / 45

• Replace a null pointer with a valid object that does
nothing

• Defined behavio(u)r: no more checking for null

• Useful in prototyping

• Useful for e.g. “null stream,” stub observers, terminators

Black Holes & White Holes

c© 2009 Andrei Alexandrescu 39 / 45

• One approach: “absorb” all calls without doing
anything: Black Hole

• Another: reject every operation by throwing an
exception White Hole

• Both are useful in applications

Standalone

Base classes (implement a fraction of an interface)

Implementation

c© 2009 Andrei Alexandrescu 40 / 45

interface Foobar {

virtual void foo(int);

virtual int bar(string);

}

class BlackHoleFoobar : Foobar {

virtual void foo(int) {}

virtual int bar(string) { return int{}; }

}

class WhiteHoleFoobar : Foobar {

virtual void foo(int) {

throw exception("Unimplemented: foo");

}

virtual int bar(string) {

throw exception("Unimplemented: bar");

}

}

c© 2009 Andrei Alexandrescu 41 / 45

That’s awful!

Automating Null Objects

c© 2009 Andrei Alexandrescu 42 / 45

• Such code should be automatically available

BlackHole<Foobar>

WhiteHole<Foobar>

• Should work with both interfaces and classes

• Should be as fast as the hand-written implementation

• What do we need to make it work?

We Need

c© 2009 Andrei Alexandrescu 43 / 45

• Compile-time introspection

Enumerate members of a class/interface

• Compile-time code generation

For each member found, generate customized code

• No popular compiled language offers both

We Need

c© 2009 Andrei Alexandrescu 44 / 45

• Compile-time introspection

Enumerate members of a class/interface

• Compile-time code generation

For each member found, generate customized code

• No popular compiled language offers both

To Conclude (again)

c© 2009 Andrei Alexandrescu 45 / 45

• Design Automation is still an elusive goal

• Like the STL: not designing the language for

design automation ⇒ no design automation

will be achieved

• Progress has been made

• Much more is to be done

	Conclusions
	Policy-Based Design Refresher
	What is PBD? Simply Put:
	PBD Success Stories

	Red Code, Green Code
	Red Code, Green Code
	Defining Features
	Transitive & Contravariant
	Combinable
	Using a Set of Features
	Using a Set of Features (cont'd)
	Enforcing Features' Structure (+)
	Enforcing Features' Structure (-)
	Actual Error Message 2(Literary Klingon)
	Remark
	Status
	Superposition
	Scott's Solution
	
	Scott's Solution, Summarized
	Total Ordering of Types
	Contravariance
	Remark
	Status

	Red Data, Green Data
	Typing the Untypable
	More Examples
	Properties
	Assume* Shims
	Using an Assume* Shim
	Composing Properties
	Multiple Parameters to the Rescue (usage)
	Multiple Parameters to the Rescue (impl.)
	Multiple Parameters to the Rescue?

	Designs That Should
	Null Object Pattern
	Black Holes & White Holes
	Implementation
	
	Automating Null Objects
	We Need
	We Need
	To Conclude (again)

