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“I would rather write programs to help me write 
programs than write programs.” 

Richard L. Sites

In our job we’re sometimes faced with tedious activities.  
Tedium is often a good indication that automation is 
possible
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Programme

• An introduction to code generators
• The design of code generators
• A case study: Perceval
• Tools and techniques
• Lessons learned
• Conclusions
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Scope of this presentation

• Practical advice drawn from direct experience
• Little or no theory
• No rocket science 

– You already had too much of it anyway ;-)

• No CASE, Generative Programming, MDA, etc.
– No connection with the Code Generation conference, but what 

a coincidence!

• Some Python, some C++
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A Success Story

• A 4,000,000+ code lines application was ported to an 
altogether different platform, with a different RDBMS, 
by a single person.
– From IBM System I (aka iSeries, aka AS/400) to Windows 

Server 2003
– From DB/2 to Oracle

 How?
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A Success Story

• A 4,000,000+ code lines application was ported to an 
altogether different platform, with a different RDBMS, 
by a single person.
– From IBM System I (aka iSeries, aka AS/400) to Windows 

Server 2003
– From DB/2 to Oracle

 How?
– By coding in a truly portable language

• Hint: it’s not Java… It’s COBOL!

– By converting automatically the relatively few differences, i.e. 
by writing a code generator! 
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Another Success Story

• At the onset of a new C++ project in early 1999 we 
decided to write our own persistence layer

• It meant we had to write the interface for all the 35 
tables in our database

• Instead I convinced our team leader that we should 
write a code generator

• In over seven years our application grew a little:
– Over 300 tables
– Over 700,000 lines of code
– Of which some 75,000 automatically generated!
– But I’ll tell you later about the one mistake I made…
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Code Generators are everywhere

• The compiler is a code generator
• Your favourite IDE’s wizards are code generators
• Web applications are often code generators of sorts
• Similar techniques may be applied to other areas of 

software development
– Basically, each time you either need to retrieve information 

from text or to provide information in textual form!
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So why doesn’t everybody use them?

• Code Generators are a kind of meta-programming
– The step to a meta level is unsettling for some people
– They may introduce an additional language/toolset 

combination

• Reflection and generic programming reduce the use of 
CG’s
– C++ template meta-programming solves many of the problems
– Dynamic languages let you define types at run-time

• However, the resulting code is often more complicated
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Intensive vs. Extensive Programming

• Intensive code has:
– Perfect factoring: Every concept is expressed once
– Awful localization: The basic steps of a complex operation are 

scattered everywhere

• Extensive code has:
– Awful factoring: lots of repetition
– Good localization: you see what is happening

• Code generators may give you the best of both worlds
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Our First Code Generator
#include <cctype>

#include <iostream>

#include <string>

int main()

{

    std::string s;

    std::cout << "Who do you want to greet? ";

    std::getline(std::cin, s);

    s[0] = toupper(s[0]);

    std::cout << "#include <iostream>\n";

    std::cout << "\n";

    std::cout << "int main()\n";

    std::cout << "{\n";

    std::cout << "\tstd::cout << \"Hello, " + s + "!\\n\";\n";

    std::cout << "}\n";

}
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Structure of a code generator

Acquisition Transformation Generation

Schema
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Acquisition

• Acquisition is the collection of the information that characterizes 
each instantiation of the schema patterns 

• It is often dominated by the infrastructure required to handle the 
external representation of the information

• Some examples:
– Parsing a textual description

• Code, perhaps?

– Querying a database
• To explore its schema
• To retrieve project wide conventional values
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Transformation

• Transformation builds an internal representation of the 
collected information

• Specific domains have consolidated representations
– e.g. compilers have augmented syntax trees

• In general, however, you’re on your own
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Generation

• Generation navigates the internal representation and 
“splices” the information onto the schema patterns to 
produce an original instance

• This area too is dominated by the infrastructure 
required to handle the external representation

• Ideally it should combine the internal representation 
with a structured representation of the desired output
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Passive vs. Active Generators

• Hunt and Thomas [Hunt2000] distinguish passive from 
active generators

• Passive generators can only be run once for each 
output instance

• Active generators may be executed as many times as 
desired
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Passive Generators

• Usually generate code that requires manual 
modification
– IDE wizards are a typical example

• Good for boilerplate code
– Company standard header comments
– Custom IDE project types

• Good for getting the easy 80% done quickly
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Active generators

• May produce successive versions of an output 
instance
– GUI builders should be active generators!

• The key is the separation between the generated code 
and its customizations
– “Do not modify above this line” is a very fragile approach
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The GENERATION GAP pattern

• Formulated by the GoF and documented byJohn 
Vlissides [Vlissides1998]

• Put the generated code in a base class
• Customize it by subclassing it
• Examples:

– ICS’s Builder xCessory
– C# partial classes
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Our case study: Perceval

• A C++ Object Relational mapping
• For each DB table there are:

– A class that directly represents it: one column – one data 
member

– A set of class templates that handle reading and writing
– A factory/container of instances that handles caching and on 

demand reading
– An internal representation class that uses the persistent state
– A factory of such internal representation
– A GUI/report oriented representation class
– Possibly a GUI frame
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The “Fake Template” idiom

• The declaration is generic
• All implementations are specific
• Good for providing building blocks for generic 

programming
• Extremely tedious
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The original DB table

create table cambio_maf (

id numeric(11) identity,

cod_cambio char(10) not null,

dta_reference datetime not null,

num_exchange_rate numeric(30,10) not null,

data_load datetime not null,

constraint cambio_maf42 primary key (id)

)

go
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The corresponding persistent class

class CambioMaf : public Owf::Port::Pers::Persistent

{

public:

std::string getCodCambio() const { return codCambio; }

Owf::DateTime getDtaReference() const { return dtaReference; }

Owf::Pers::Money getNumExchangeRate() const { return numExchangeRate; }

Owf::DateTime getDataLoad() const { return dataLoad; }

void setCodCambio(const std::string & arg) { codCambio = arg; }

void setDtaReference(Owf::DateTime arg) { dtaReference = arg; }

void setNumExchangeRate(Owf::Pers::Money arg) 

{ numExchangeRate = arg; }

void setDataLoad(Owf::DateTime arg) { dataLoad = arg; }

private:

friend class Owf::Port::Pers::PRecord<CambioMaf>;

std::string codCambio;

Owf::DateTime dtaReference;

Owf::Pers::Money numExchangeRate;

Owf::DateTime dataLoad;

};
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A first try: handwritten C++

• Formal language recognition is one of the most well 
understood fields in computer science

• The architecture is standard
– Valid “words” are recognized by a lexical analyzer, or scanner
– The “sentences” in which they are combined are recognized 

by a parser
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The scanner

• The primitive elements of programming languages can 
be recognized by regular expressions
– E.g. identifiers: [A-Za-z_][A-Za-z_0-9]*

• Simple ones are easily implemented by hand:
– Draw the Deterministic Automaton diagram
– Code the loop around a switch, with one case per state
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A Deterministic Finite Automaton
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The parser

• Two big families
– Bottom up are great for automatic generation
– Top down are more easily coded by hand

• There are caveats
– It’s easy to introduce infinite recursion
– Some languages take a long time to parse (On2)

• Languages should be kept simple
– Python is among the simplest ones
– Java is simple enough for tools to handle it
– C++ is extremely hard



Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

Hand writing the parser

• SQL DDL is a tractable language
– Declarative languages often are

• Recursive descent is simple and regular
– One function (or class) for each symbol
– If the language is recursive, so is the parser

• “The parser is the AST”
– One class per symbol
– Each symbol’s children are recognized in the parent’s 

constructor
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Generation

• Make a “tracer bullet”: hand code a working example of 
the whole source code sequence for a single table

• Prepend “std::cout <<“ to all your source lines!
• Seek a methodology that limits the modifications you 

need to apply to your reference code
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Here my trouble began

• We switched from Sybase ASE to Sybase ASA
– Same supplier, different syntax
– It turned out to be simpler to convert the syntax than to change 

the generator

• Over time we thought of improvements to our 
reference architecture
– Wading through a miriad of ‘std::cout << …;’ statements 

wasn’t any fun
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Code Generators revisited

• Beware of change: C++ handwriting may be OK for 
version 1.0, but takes too long to maintain

• It’s also a matter of timing: at the onset of a new 
project all deadlines appear so far away…

• Why don’t we also…
– If you have a regular architecture, there’s always at least one 

other thing you can generate from the same data
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The right approach

• Establish an architecture!
• Acquisition: use a parser generator, or at least a well 

devised set of regular expressions
• Generation: use a macro processor, or a template 

engine
• Overall: use an agile language

– If performance is an issue for your generator, you’re in deep 
trouble
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Perceval 2.0

• Acquisition: use a parser generator
– PLY: A Python implementation of Lex & Yacc

• Generation: use a template engine
– Cheetah: A non XML, non HTML specific engine

• Python is the language
– Pleasant to code in
– Maintainable
– “Batteries included” and many more within easy reach
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Conclusions

• Writing code generators is easy!
– The domain is our own
– We control the requirements… sort of

• Use tools!
• Use a suitable language!
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Q & A
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Colophon

• The presentation title was inspired by the refrain from 
The Who’s first and greatest hit single: “My 
Generation”

• The presentation scheme was inspired by the work of 
Swiss artist Max Bill

• This colophon was inspired by the ones you find in all 
O’Reilly books :-)
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