
Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

Talking ‘bout Code Generation

Nicola Musatti

Nicola.Musatti@gmail.com

ACCU Conference 2008

mailto:Nicola.Musatti@gmail.com

Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

“I would rather write programs to help me write
programs than write programs.”

Richard L. Sites

In our job we’re sometimes faced with tedious activities.
Tedium is often a good indication that automation is
possible

Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

Programme

• An introduction to code generators
• The design of code generators
• A case study: Perceval
• Tools and techniques
• Lessons learned
• Conclusions

Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

Scope of this presentation

• Practical advice drawn from direct experience
• Little or no theory
• No rocket science

– You already had too much of it anyway ;-)

• No CASE, Generative Programming, MDA, etc.
– No connection with the Code Generation conference, but what

a coincidence!

• Some Python, some C++

Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

A Success Story

• A 4,000,000+ code lines application was ported to an
altogether different platform, with a different RDBMS,
by a single person.
– From IBM System I (aka iSeries, aka AS/400) to Windows

Server 2003
– From DB/2 to Oracle

 How?

Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

A Success Story

• A 4,000,000+ code lines application was ported to an
altogether different platform, with a different RDBMS,
by a single person.
– From IBM System I (aka iSeries, aka AS/400) to Windows

Server 2003
– From DB/2 to Oracle

 How?
– By coding in a truly portable language

• Hint: it’s not Java…

Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

A Success Story

• A 4,000,000+ code lines application was ported to an
altogether different platform, with a different RDBMS,
by a single person.
– From IBM System I (aka iSeries, aka AS/400) to Windows

Server 2003
– From DB/2 to Oracle

 How?
– By coding in a truly portable language

• Hint: it’s not Java… It’s COBOL!

Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

A Success Story

• A 4,000,000+ code lines application was ported to an
altogether different platform, with a different RDBMS,
by a single person.
– From IBM System I (aka iSeries, aka AS/400) to Windows

Server 2003
– From DB/2 to Oracle

 How?
– By coding in a truly portable language

• Hint: it’s not Java… It’s COBOL!

– By converting automatically the relatively few differences, i.e.
by writing a code generator!

Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

Another Success Story

• At the onset of a new C++ project in early 1999 we
decided to write our own persistence layer

• It meant we had to write the interface for all the 35
tables in our database

• Instead I convinced our team leader that we should
write a code generator

• In over seven years our application grew a little:
– Over 300 tables
– Over 700,000 lines of code
– Of which some 75,000 automatically generated!
– But I’ll tell you later about the one mistake I made…

Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

Code Generators are everywhere

• The compiler is a code generator
• Your favourite IDE’s wizards are code generators
• Web applications are often code generators of sorts
• Similar techniques may be applied to other areas of

software development
– Basically, each time you either need to retrieve information

from text or to provide information in textual form!

Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

So why doesn’t everybody use them?

• Code Generators are a kind of meta-programming
– The step to a meta level is unsettling for some people
– They may introduce an additional language/toolset

combination

• Reflection and generic programming reduce the use of
CG’s
– C++ template meta-programming solves many of the problems
– Dynamic languages let you define types at run-time

• However, the resulting code is often more complicated

Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

Intensive vs. Extensive Programming

• Intensive code has:
– Perfect factoring: Every concept is expressed once
– Awful localization: The basic steps of a complex operation are

scattered everywhere

• Extensive code has:
– Awful factoring: lots of repetition
– Good localization: you see what is happening

• Code generators may give you the best of both worlds

Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

Our First Code Generator
#include <cctype>

#include <iostream>

#include <string>

int main()

{

 std::string s;

 std::cout << "Who do you want to greet? ";

 std::getline(std::cin, s);

 s[0] = toupper(s[0]);

 std::cout << "#include <iostream>\n";

 std::cout << "\n";

 std::cout << "int main()\n";

 std::cout << "{\n";

 std::cout << "\tstd::cout << \"Hello, " + s + "!\\n\";\n";

 std::cout << "}\n";

}

Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

Structure of a code generator

Acquisition Transformation Generation

Schema

Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

Acquisition

• Acquisition is the collection of the information that characterizes
each instantiation of the schema patterns

• It is often dominated by the infrastructure required to handle the
external representation of the information

• Some examples:
– Parsing a textual description

• Code, perhaps?

– Querying a database
• To explore its schema
• To retrieve project wide conventional values

Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

Transformation

• Transformation builds an internal representation of the
collected information

• Specific domains have consolidated representations
– e.g. compilers have augmented syntax trees

• In general, however, you’re on your own

Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

Generation

• Generation navigates the internal representation and
“splices” the information onto the schema patterns to
produce an original instance

• This area too is dominated by the infrastructure
required to handle the external representation

• Ideally it should combine the internal representation
with a structured representation of the desired output

Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

Passive vs. Active Generators

• Hunt and Thomas [Hunt2000] distinguish passive from
active generators

• Passive generators can only be run once for each
output instance

• Active generators may be executed as many times as
desired

Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

Passive Generators

• Usually generate code that requires manual
modification
– IDE wizards are a typical example

• Good for boilerplate code
– Company standard header comments
– Custom IDE project types

• Good for getting the easy 80% done quickly

Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

Active generators

• May produce successive versions of an output
instance
– GUI builders should be active generators!

• The key is the separation between the generated code
and its customizations
– “Do not modify above this line” is a very fragile approach

Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

The GENERATION GAP pattern

• Formulated by the GoF and documented byJohn
Vlissides [Vlissides1998]

• Put the generated code in a base class
• Customize it by subclassing it
• Examples:

– ICS’s Builder xCessory
– C# partial classes

Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

Our case study: Perceval

• A C++ Object Relational mapping
• For each DB table there are:

– A class that directly represents it: one column – one data
member

– A set of class templates that handle reading and writing
– A factory/container of instances that handles caching and on

demand reading
– An internal representation class that uses the persistent state
– A factory of such internal representation
– A GUI/report oriented representation class
– Possibly a GUI frame

Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

The “Fake Template” idiom

• The declaration is generic
• All implementations are specific
• Good for providing building blocks for generic

programming
• Extremely tedious

Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

The original DB table

create table cambio_maf (

id numeric(11) identity,

cod_cambio char(10) not null,

dta_reference datetime not null,

num_exchange_rate numeric(30,10) not null,

data_load datetime not null,

constraint cambio_maf42 primary key (id)

)

go

Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

The corresponding persistent class

class CambioMaf : public Owf::Port::Pers::Persistent

{

public:

std::string getCodCambio() const { return codCambio; }

Owf::DateTime getDtaReference() const { return dtaReference; }

Owf::Pers::Money getNumExchangeRate() const { return numExchangeRate; }

Owf::DateTime getDataLoad() const { return dataLoad; }

void setCodCambio(const std::string & arg) { codCambio = arg; }

void setDtaReference(Owf::DateTime arg) { dtaReference = arg; }

void setNumExchangeRate(Owf::Pers::Money arg)

{ numExchangeRate = arg; }

void setDataLoad(Owf::DateTime arg) { dataLoad = arg; }

private:

friend class Owf::Port::Pers::PRecord<CambioMaf>;

std::string codCambio;

Owf::DateTime dtaReference;

Owf::Pers::Money numExchangeRate;

Owf::DateTime dataLoad;

};

Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

A first try: handwritten C++

• Formal language recognition is one of the most well
understood fields in computer science

• The architecture is standard
– Valid “words” are recognized by a lexical analyzer, or scanner
– The “sentences” in which they are combined are recognized

by a parser

Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

The scanner

• The primitive elements of programming languages can
be recognized by regular expressions
– E.g. identifiers: [A-Za-z_][A-Za-z_0-9]*

• Simple ones are easily implemented by hand:
– Draw the Deterministic Automaton diagram
– Code the loop around a switch, with one case per state

Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

A Deterministic Finite Automaton

Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

The parser

• Two big families
– Bottom up are great for automatic generation
– Top down are more easily coded by hand

• There are caveats
– It’s easy to introduce infinite recursion
– Some languages take a long time to parse (On2)

• Languages should be kept simple
– Python is among the simplest ones
– Java is simple enough for tools to handle it
– C++ is extremely hard

Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

Hand writing the parser

• SQL DDL is a tractable language
– Declarative languages often are

• Recursive descent is simple and regular
– One function (or class) for each symbol
– If the language is recursive, so is the parser

• “The parser is the AST”
– One class per symbol
– Each symbol’s children are recognized in the parent’s

constructor

Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

Generation

• Make a “tracer bullet”: hand code a working example of
the whole source code sequence for a single table

• Prepend “std::cout <<“ to all your source lines!
• Seek a methodology that limits the modifications you

need to apply to your reference code

Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

Here my trouble began

• We switched from Sybase ASE to Sybase ASA
– Same supplier, different syntax
– It turned out to be simpler to convert the syntax than to change

the generator

• Over time we thought of improvements to our
reference architecture
– Wading through a miriad of ‘std::cout << …;’ statements

wasn’t any fun

Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

Code Generators revisited

• Beware of change: C++ handwriting may be OK for
version 1.0, but takes too long to maintain

• It’s also a matter of timing: at the onset of a new
project all deadlines appear so far away…

• Why don’t we also…
– If you have a regular architecture, there’s always at least one

other thing you can generate from the same data

Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

The right approach

• Establish an architecture!
• Acquisition: use a parser generator, or at least a well

devised set of regular expressions
• Generation: use a macro processor, or a template

engine
• Overall: use an agile language

– If performance is an issue for your generator, you’re in deep
trouble

Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

Perceval 2.0

• Acquisition: use a parser generator
– PLY: A Python implementation of Lex & Yacc

• Generation: use a template engine
– Cheetah: A non XML, non HTML specific engine

• Python is the language
– Pleasant to code in
– Maintainable
– “Batteries included” and many more within easy reach

Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

Conclusions

• Writing code generators is easy!
– The domain is our own
– We control the requirements… sort of

• Use tools!
• Use a suitable language!

Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

Q & A

Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

Bibliography

[Hunt1999] Hunt, A. Thomas, D., The Pragmatic
Programmer, Addison Wesley 1999

[Vlissides1998] Vlissides, J., Pattern Hatching – Design
Patterns Applied, Addison Wesley, 1998

PLY http://ply.dabeaz.com

Cheetah http://www.cheetahtemplate.org

Talkin’ bout Code Generation – ACCU Conference 2008 Copyright 2008 Nicola Musatti

Colophon

• The presentation title was inspired by the refrain from
The Who’s first and greatest hit single: “My
Generation”

• The presentation scheme was inspired by the work of
Swiss artist Max Bill

• This colophon was inspired by the ones you find in all
O’Reilly books :-)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

