
Is Functional Programming (FP)
for me?

ACCU Conference 2008
Hubert Matthews

hubert@oxyware.com

April 2008 Copyright © 2008 Hubert Matthews 2

Overview of talk

• History of computing
• Types of problem, developers, solution,

environments, managers
• Pros and cons of FP
• Comparison of FP to other choices

– Success stories
– Where traditional still wins

• FP language v. FP style

April 2008 Copyright © 2008 Hubert Matthews 3

History

• Three strands in computing (1950s)
– FORTRAN - numeric calculations
– COBOL - state, process and I/O
– LISP - symbolic calculations, AI

• These strands still exist
– FORTRAN - still numerics, procedural
– COBOL -> structured prog -> OO
– LISP -> functional, higher-level langs

• These problem types still exist

April 2008 Copyright © 2008 Hubert Matthews 4

Models of problem

• Analysis models (not solution)
– Describing the problem

• Some fit a functional description, some don’t

UML statechart
UML activity diagram

Process

Pre/postconditionsI/O

UML classState

FunctionalSymbolic/algorithmic

MathematicsNumeric

April 2008 Copyright © 2008 Hubert Matthews 5

Type of developers

• Scientist turned developer
• Mathematician turned developer
• Developer from OO world
• Novice

• Keen to learn v. “old dog”
• Comfort level of change
• Human side of change

– Change needs planning and selling

April 2008 Copyright © 2008 Hubert Matthews 6

Mapping solution to problem

business
problem

assembler

FORTRAN C

C++ Java
C# Smalltalk

OO

ruby perl python

LISP Haskell Ocaml
PrologXSLT

decomposition

mapping

Real world Solution space

April 2008 Copyright © 2008 Hubert Matthews 7

Levels of expressivity and power

• Paul Graham and BLUB programmers
– Expressive “enough”

• Error rates and productivity per line
– Denser code is better for both

• Mapping from problem to solution
– Key strength of OO
– Larger mapping gap leads to errors and

reduced productivity

April 2008 Copyright © 2008 Hubert Matthews 8

Glass’s errors

• 30% missing reqts
– No change for FP here

• 45% integration, complex state
– Pure FP code gains, mixed code doesn’t

• 25% could be caught by coverage

“Facts and Fallicies of Software Engineering”, Robert Glass

April 2008 Copyright © 2008 Hubert Matthews 9

Complexity

• Essential complexity
– Inherent in the problem

• Accidental complexity
– Part of the solution
– Infrastructure (techies favourite!)

• Use power of higher-level languages to
reduce mapping gap
– Domain-specific languages

• Are you working on the real problem?

April 2008 Copyright © 2008 Hubert Matthews 10

Type of environment

• Managers
– Trust, recruitment, pay levels, blame
– “Tell me again, why can’t we do this in Java?”

• Technical
– Integration, existing libraries (FFI)
– Native library support and tools (IDE, debugger)

• Commercial
– Do your customers care?

• Cultural
– Academic or not

April 2008 Copyright © 2008 Hubert Matthews 11

Migrating and adopting FP

• Don’t underestimate the effort or time
• Standish failures

– User rejection (here user == developer)
– Lack of management support

• Manage expectations and risks
• Expect an initial reduction in productivity

– New language, tools, data structures, etc

April 2008 Copyright © 2008 Hubert Matthews 12

Cool stuff in FP

• Powerful type systems
• Higher-order functions
• Lazy and partial evaluation
• Continuations and tail recursion
• Referential transparency - no side effects
• List comprehensions
• Composability of modules
• Compiler does more work (optimisation)
• (C.f. the mapping problem)

April 2008 Copyright © 2008 Hubert Matthews 13

Not so cool stuff in FP

• State, I/O, exceptions
– “The Awkward Squad” (Simon P-J)

• I/O is not possible in “pure” FP
– C++ templates are pure!
– Haskell’s monads keep pure and impure

separate
• Variables/state also not possible

– Type system maintains the separation
• Neither are natural idioms in FP

April 2008 Copyright © 2008 Hubert Matthews 14

The problem of I/O

• I/O is central to most real applications
• Haskell’s monads v. Erlang CSP-style I/O
• Input, process, output - algorithmic core

thin I/O
layer

How FP enthusiasts
like to see the world

functional
code

I/O is core
of system

algorithmic
code

Reality of most
business systems

April 2008 Copyright © 2008 Hubert Matthews 15

The problem of state

• State is ubiquitous in the real world
• Object-orientation models this very well

– One of the reasons for its dominance
• Most real-world applications do not

perform complex calculations
• Most FP languages can be impure

April 2008 Copyright © 2008 Hubert Matthews 16

Concurrency and optimisation

• Implicit
– FP compilers can optimise aggressively

because of immutable state (no aliasing)
– Graph reduction is inherently parallel
– Finding data parallelism is still hard (DPH)
– Still no silver bullet even with FP

• Explicit
– Erlang’s process-oriented programming
– Haskell’s SW transactional memory

April 2008 Copyright © 2008 Hubert Matthews 17

Parallelising

• Parallel calculations relatively simple
– Add more CPUs/cores
– Erlang’s SMP scales well (32 CPUs, 28x)

• Parallelising I/O is harder
– Particularly when sharing mutable state

• Scalability of web apps limited primarily by I/O
not CPU (database)

• OpenMP is primarily numeric, not FP
– pmap - explicit

• MPI is message based (I/O)

April 2008 Copyright © 2008 Hubert Matthews 18

Commercial uses of FP
• CUFP conference (2004 onwards)

• Algorithmic examples dominate
– Verification, compilation, calculation, not parallel

HaskellOpen sourceDarcs

F#MicrosoftMachine learning

OcamlJane Street CapitalQuantitive research

OcamlLexiFiPricing instruments

OcamlDassaultDSL for robots

OcamlIBMDB migration tool

OcamlMicrosoftDriver verifier

SchemeDartmouthTerrorism response

HaskellABN AmroCredit risk

LanguageWhoWhat

April 2008 Copyright © 2008 Hubert Matthews 19

Erlang

• More a concurrent language than a
functional one
– Functional aspects are there to make

concurrency easier
– Also for programmer productivity gains

• Most widely deployed FP
– Telephone switches (large systems)

• Came from research on reliability
– Distributed error handling, supervisors

• Has I/O at its core

April 2008 Copyright © 2008 Hubert Matthews 20

FP efficiency

• Numeric efficiency
– Usually optimised for integers
– Floating point not as good (boxing/tagging)

• Alioth benchmarks (CPU usage)
– Compared to C and C++ (1x)
– LISP, Haskell, Ocaml, Clean, Java (2x-5x)
– Perl, python slower (20x)
– Ruby much slower (50x)
– Prolog (70x)

• Edinburgh comparison of Erlang and C++

April 2008 Copyright © 2008 Hubert Matthews 21

Functional style v. FP
• How can we gain some benefits of FP in

imperative languages?
• Pure “const” functions

– All context on call stack (debugging easy)
– Makes unit testing easier
– Tension with OO
– More “leaves” in call tree, less coupling

• Ring-fence I/O and mutable state
– Use Parameterise from Above for purity

• List comprehensions
– C++ STL, map/reduce in other languages

• Immutable data types

April 2008 Copyright © 2008 Hubert Matthews 22

Separation

• Easier to test functional code (non-
modifying)
– Even in an imperative language

• Command query separation
– Doesn’t play nicely with concurrency or

distribution however
• Puts testing burden on integration

– Parameterise from above

April 2008 Copyright © 2008 Hubert Matthews 23

Functional envy

• Imperative languages keep acquiring
FP-like features
– Garbage collection (LISP)
– Closures and blocks (higher-order funcs)
– List comprehensions
– Type inference (C++ templates)
– Continuations (Ruby’s call/cc)

• These may be enough to gain benefits
of FP without losing benefits of host
language

April 2008 Copyright © 2008 Hubert Matthews 24

Composite systems

• Different layers or components can use
different technologies

• Large-scale separation
• Games

– Rendering - highly parallelisable, “FPable”
– State layer - where stuff is, OO
– Game play - what to do (AI), scripting

• Web site using FP
– XSLT, StringTemplate, SQL

April 2008 Copyright © 2008 Hubert Matthews 25

FP sweet spot

• Complex algorithms
• More academic cultures
• Simple integration and external library

requirements

April 2008 Copyright © 2008 Hubert Matthews 26

So why bother with FP?

• Very good on algorithmic code
– Defined semantics, maths basis

• Very good on complex calculations
– Optimisation possibilities

• Higher order thinking
• C.f. Raymond’s comment on Lisp
• Makes imperative programs cleaner

April 2008 Copyright © 2008 Hubert Matthews 27

Summary

• FP fits certain problem types, people,
environments well
– …and some it doesn’t fit at all…
– Context is King (as ever)

• Do not underestimate the cost and
difficulty of migrating

• You can use FP thinking in non-FP
languages fruitfully

• You can write anything in anything!

