Know Your Units
TDD, DDT, POUTing and GUTs

Kevlin Henney
kevlin@curbralan.com

" [ntent
= Clarify the practice(s) of unit testing

= Content
» Kinds of tests

= Testing approach
= Good unit tests
= Listening to your tests

= But first...

Jsing autodetected IRQ (11) to improve performance.
ifcust (PL/TCP Class 1 packet driver - DIX Ethernet) M’H
» free packets of lemgth 168, 5 free packets of length 1
[he kernel is using {z:-_-,gs“au}sz onous sends

[he Hef.:i{!ﬁﬂi Module occupies @ buytes of conventional mer

] |" ""'."_"..'.'..

|1rl'

J’ IR

__
|B
|

d

- A=

. File Edit View Go Bookmarks Tools Window Help

OQ O G Q |Q3‘ http: /v, ns. nlfserviet/Satelite *dd = 107349063346 18pagename =www.ns.nl % 2FF] [qfﬂﬂﬂl“ﬂh] ng

+| 4% Home | FJBookmarks % mozila.org %3 Latest Builds

% Home N5 Online Shop English Zoek =
Nederland A3
A R e e 0 D e & ip e N

Planner Plus Planner Plus & Tenug
Actuele Reizinformatie

Internationale treinplanner

NS-MNachtnet

- java.lang.NullPointerException

MNaar Schiphol

Stationsvoorzieningen

Wervoer van en naar het station
Op het station

[E] Fle Edit ’ T 5 Help Adobe PDF
e H)) i &3
Arial

Cutline Slides T OO B I 1 O T = RO = R Rl RN ET RN AN I A NN o A A O A *3e 4 1510617 1800090020011 141200

Combining Patterns

5

Microsoft Visual C++ Runtime Library

Runtime Errar!

Program: ogram Files\Internet Explor

pure virtual function call

Pattern-Based Software Development

© Curbralan Ltd

!v.,-:i'i"vévE

Template.ppt English (L.

'ﬁﬁ ﬂ ‘?ﬂ.‘? . B

Kinds of Tests

» Testing is a way of showing that you
care about something

= |f a particular quality has value for a
system, there should be a concrete

demonstration of that value

= Code quality can be demonsirated
through unit testing, static analysis,
code reviews, analysing frends in
defect and change history, etc.

Unit testing involves testing the individual
classes and mechanisms; is the
responsibility of the application engineer
who implemented the structure. |...]
System testing involves testing the system

as a whole; is the responsibility of the
quality assurance team.

Grady Booch

Object-Oriented Analysis and Design with Applications, 2"d edition

= System testing involves testing of the
software as a whole product

= System testing may be a distinct job or
role, but not necessarily a group

» Programmer testing involves testing
of code by programmers

= It is about code-facing tests, i.e., unit
and integration tests

= It is not the testing of programmers!

Teams do deliver successfully using manual tests, so this
can't be considered a critical success factor. However, every
programmer I've interviewed who once moved to automated
tests swore never to work without them again. I find this
nothing short of astonishing.

Their reason has to do with improved quality of life. During
the week, they revise sections of code knowing they can
quickly check that they hadn't inadvertently broken
something along the way. When they get code working on
Friday, they go home knowing that they will be able on
Monday to detect whether anyone had broken it over the
weekend —they simply rerun the tests on Monday morning.
The tests give them freedom of movement during the day
and peace of mind at night.

Alistair Cockburn, Crystal Clear

= Automated tests offer a way to
reduce the waste of repetitive work

» Write code that tests code

= However, note that not all kinds of

tests can be automated

= Usability tests require observation and
monitoring of real usage

= Exploratory testing is necessarily a
manual task

A test is not a unit test if:

It talks to the database
It communicates across the network

It touches the file system
It can't run at the same time as any of your other unit

tests

You have to do special things to your environment
(such as editing config files) to run it.

Tests that do these things aren't bad. Often they are worth
writing, and they can be written in a unit test harness.
However, it is important to be able to separate them from
true unit tests so that we can keep a set of tests that we
can run fast whenever we make our changes.

Michael Feathers, "A Set of Unit Testing Rules"

= Unit tests are on code that is isolated
from external dependencies

» The outcome is based on the code of
the test and the code under test

» Integration tests involve external
dependencies
= Some portion of a system is necessarily

not unit testable; the portion that is not
necessarily so is a measure of coupling

= |t is worth distinguishing between
tests on functional behaviour...

= Written in terms of asserting values and
interactions in response to use, the

result of which is either right or wrong

= And tests on operational behaviour

= More careful experimental design is
needed because they typically require
sampling and statistical interpretation

Testing Approach

If all you could make was a long-term argument for
testing, you could forget about it. Some people would do it

out of a sense of duty or because someone was watching
over their shoulder. As soon as the attention wavered or

the pressure increased, no new tests would get written,

the tests that were written wouldn't be run, and the whole

thing would fall apart.

Kent Beck
Extreme Programming Explained, 1°t edition

Test Early.
Test Oftevw.

Test Automatically.

Andrew Hunt ond Dawid Thomas
The Pragmatic Progromwmer

= A passive approach looks at tests as
a way of confirming code behaviour

= This is Plain OI' Unit Testing (POUTing)
= An active approach also uses

testing to frame and review design

= This is Test-Driven Development (TDD)
= A reactive approach infroduces

tests in response to defects

= This is Defect-Driven Testing (DDT)

Very many people say "TDD" when
they really mean, "I have good unit

tests” ("I have GUTs"?) Ron)effries
tried for years to explain what this

was, but we never got a catch-phrase
for it, and now TDD is being watered
down to mean GUTs.

Alistair Cockburn
"The modern programming professional has GUTs"

= TDD complements other design,
verification and validation activities

= The emphasis is on defining a coniract
for code with behavioural examples

that act as both specification and
confirmation

» The act of writing tests (i.e., specifying)
is interleaved with the act of writing the
target code, offering both qualitative
and quantitative feedback

Because Unit Testing is the plain-Jane
progenitor of Test Driven Development, it's
kind of unfair that it doesn't have an
acronym of its own. After all, it's hard to get
programmer types to pay aitention if they

don't have some obscure jargon to bandy
about. [...] I'll borrow from the telco folks
and call unit testing Plain Old Unit Testing.

Jacob Proffitt, "TDD or POUT"

= POUT employs testing as a code
verification ool

= Test writing follows code writing when
the piece of target code is considered

complete — effective POUTing
assumes sooner rather than later

= The emphasis is quantitative and the
focus is on defect discovery rather than
design quality or problem clarification

= DDT involves fixing a defect by first
adding a test for the defect

= DDT uses defects as an opportunity to
improve coverage and embody

learning from feedback in code form

= This is a normal part of effective TDD
and POUT practice

= However, DDT can also be used on
legacy code to grow the set of tests

Less unit testing dogma.
Movre untt testing karma.

Alberto Savolno
"The Way of Testivus'

Good Unit Tests

| was using xUnit. | was using mock objects. So why did my tests seem
more like necessary baggage instead of this glorious, enabling
approach?

In order to resolve this mismatch, | decided to look more closely at
what was inspiring all the unit-testing euphoria. As | dug deeper, |
found some major flaws that had been fundamentally undermining my
approach to unit testing.

The first realization that jumped out at me was that my view of testing
was simply too “flat.” | looked at the unit-testing landscape and saw
tools and technologies. The programmer in me made unit testing more
about applying and exercising frameworks. It was as though | had
essentially reduced my concept of unit testing to the basic mechanics
of exercising xUnit to verify the behavior of my classes. [...]

In general, my mindset had me thinking far too narrowly about what it
meant to write good unit tests.

Tod Golding, "Tapping into Testing Nirvana"

= Poor unit tests lead to poor unit-
testing experiences

= Effective testing requires more than
mastering the syntax of an assertion

= |t is all too easy to end up with
monolithic tests

= Rambling stream-of-consciousness
narratives intended for machine
execvution but not human consumption

{

[Test]
public void Test()

RecentlyUsedList 1ist = new RecentlyUsedList();
Assert.AreEqual (0, list.Count);
list.Add("Aardvark");
Assert.AreEqual (1, list.Count);
Assert.AreEqual ("Aardvark", 1ist[0]):
list.Add("Zebra");
1ist.Add("Mongoose") ;
Assert.AreEqual (3, list.Count);
Assert.AreEqual ("Mongoose", 1ist[0]):
Assert.AreEqual ("Zebra", list[1]);
Assert.AreEqual ("Aardvark", Tlist[2]):
list.Add("Aardvark");
Assert.AreEqual (3, list.Count);
Assert.AreEqual ("Aardvark”, 1ist[0]);
Assert.AreEqual ("Mongoose", 1ist[1]);
Assert.AreEqual ("Zebra", 1list[2]);
bool thrown;
try
{

string unreachable = 1ist[3];

thrown = false;

}
catch (ArgumentOutOfRangeException)

thrown = true;

}

Assert.IsTrue(thrown);

{

}

{

}

{

[Test]
public void Testl()

RecentlyUsedList Tist = new RecentlyUsedList();
Assert.AreEqual (0, list.Count);
list.Add("Aardvark");
Assert.AreEqual (1, list.Count);
Assert.AreEqual ("Aardvark", 1ist[0]):
list.Add("Zebra")
list.Add("Mongoose") ;
Assert.AreEqual (3, list.Count);
Assert.AreEqual ("Mongoose", 1ist[0]):
Assert.AreEqual ("Zebra", list[1]);
Assert.AreEqual ("Aardvark", Tist[2]):

[Test]
public void Test2()

RecentlyUsedList 1list = new RecentlyUsedList();
Assert.AreEqual (0, list.Count);
list.Add("Aardvark");
Assert.AreEqual (1, list.Count);
Assert.AreEqual ("Aardvark", 1ist[0]);
list.Add("Zebra");
list.Add("Mongoose") ;
Assert.AreEqual (3, 1ist.Count);
Assert.AreEqual ("Mongoose", 1ist[0]):
Assert.AreEqual ("Zebra", list[1]);
Assert.AreEqual ("Aardvark", Tist[2]):
list.Add("Aardvark") ;
Assert.AreEqual (3, 1list.Count);
Assert.AreEqual ("Aardvark”, 1ist[0]);
Assert.AreEqual ("Mongoose", Tist[1]):
Assert.AreEqual ("Zebra", list[2]);

[Test]
public void Test3()

RecentlyUsedList T1ist = new RecentlyUsedList();
Assert.AreEqual (0, list.Count);

T _a2 AXNSIUA___ 0 ____1_M\ _

= A predominantly procedural test
style is rarely effective

» It is based on the notion that "l have a
function foo, therefore | have one test

function that tests foo", which does not
really make sense for object usage

= And, in truth, procedural testing has
never really made sense for for
procedural code either

[Test]

public void Constructor()

{ Construct
RecentlyUsedList Tist = new RecentlyUsedList(); OWSTYULTOY
Assert.AreEqual (0, Tist.Count);

}

[Test]

public void Add()

{

RecentlyUsedList Tist = new RecentlyUsedList();
list.Add("Aardvark") ;

Assert.AreEqual (1, Tist.Count);
list.Add("Zebra") ;

list.Add("Mongoose") ;

Assert.AreEqual (3, Tist.Count);
list.Add("Aardvark") ;

Assert.AreEqual (3, Tist.Count);

[Test]
public void Indexer()
{
RecentlyUsedList Tist = new RecentlyUsedList(); (Vycig)(gy'
list.Add("Aardvark") ;
list.Add("Zebra");
list.Add("Mongoose") ;
Assert.AreEqual ("Mongoose", 1ist[0]);
Assert.AreEqual ("Zebra", Tist[1]);
Assert.AreEqual ("Aardvark", Tist[2]);
list.Add("Aardvark") ;
Assert.AreEqual ("Aardvark", 1ist[0]);
Assert.AreEqual ("Mongoose", 1ist[1]);
Assert.AreEqual ("Zebra", 1ist[2]);
bool thrown;
try
{
string unreachable = Tist[3];
thrown = false;

}
catch (ArgumentOutOfRangeException)

thrown = true;

Assert.IsTrue(thrown);

void test sort()

{

int single[] = { 2 };
quickersort(single, 1);
assert(sorted(single, 1));

int identical[] = { 2, 2, 2 };
quickersort(identical, 3);
assert(sorted(identical, 3));

int ascending[] = { -1, 0, 1 };
quickersort(ascending, 3);
assert(sorted(ascending, 3));

int descending[] = { 1, 0, -1 };
quickersort(descending, 3);
assert(sorted(descending, 3));

int arbitrary[] = { 32, 12, 19, INT MIN };

quickersort(arbitrary, 4);
assert(sorted(arbitrary, 4));

void test sort()

{

int empty[] = { 2, 1};
quickersort (empty + 1, 0);
assert (empty[0] 2);
assert (empty[1] 1);
int single[] = { 3, 2, 1 };
quickersort(single + 1, 1);

assert(single[0] ==
assert(single[1]
assert(single[2]

3);
2);
1);

int identical[] = { 3, 2, 2, 2, 1 };
quickersort(identical + 1, 3),

assert (identical[0]
assert(identical[1]
assert(identical[2]
assert(identical[3]
assert (identical[4]

int ascending[] = {

2,

3),
2);
2);
2);
1);
'1’ 09 13

quickersort (ascending + 1, 3);

assert (ascending[0]
assert (ascending[1]
assert (ascending[2]
assert (ascending[3]
assert (ascending[4]

int descending[] = { 2, 1, 0,

2);
-1);
0);
1);
-2);

quickersort(descending + 1, 3);

assert (descending[0]
assert (descending[1]
assert (descending[2]
assert (descending[3]
assert (descending[4]

'1)9
0);
1);
-2);

-2 };

'1: -2 };

int arbitrary[] = { 100, 32, 12, 19, INT_MIN, 0 };
quickersort (arbitrary + 1, 4);

assert(arbitrary[0]
assert (arbitrary[1]
assert (arbitrary[2]
assert (arbitrary[3]
assert(arbitrary[4]
assert (arbitrary[5]

100) ;

INT MIN);
12);

19);

32);

0);

Everybody knows that TDD stands for Test Driven Development.
However, people too often concentrate on the words “Test" and
"Development” and don't consider what the word "Driven” really
implies. For tests to drive development they must do more than
just test that code performs its required functionality: they must
clearly express that required functionality to the reader. That is,
they must be clear specifications of the required functionality.

Tests that are not written with their role as specifications in mind
can be very confusing to read. The difficulty in understanding
what they are testing can greatly reduce the velocity at which a
codebase can be changed.

Nat Pryce and Steve Freeman
"Are Your Tests Really Driving Your Development?”

= Behavioural tests are based on
usage scenarios and outcomes

= They are purposeful, cuiting across and
combine individual operations and use

= Test names should reflect requirements,
emphasising intention and goals rather
than mechanics

= This style correlates with the idea of use
cases and user stories in the small

[Test]
public void InitialListIsEmpty()

{
RecentlyUsedList 1ist = new RecentlyUsedList();

Assert.AreEqual (0, Tist.Count);

[Test]
public void Addition0fSingleItemToEmptyListIsRetained()

RecentlyUsedList 1ist = new RecentlyUsedList();
list.Add("Aardvark");

Assert.AreEqual (1, list.Count);
Assert.AreEqual ("Aardvark", 1ist[0]);

}
[Test]
public void Addition0fDistinctItemsIsRetainedInStackOrder ()
{
RecentlyUsedList 1ist = new RecentlyUsedList();
list.Add("Aardvark") ;
list.Add("Zebra");
list.Add("Mongoose") ;

Assert.AreEqual (3, Tist.Count);
Assert.AreEqual ("Mongoose", 1ist[0]);
Assert.AreEqual ("Zebra", list[1]);
Assert.AreEqual ("Aardvark", list[2]);

[Test]
public void DuplicateltemsAreMovedToFrontButNotAdded ()
{
RecentlyUsedList 1ist = new RecentlyUsedList();
list.Add("Aardvark") ;
list.Add("Mongoose") ;
list.Add("Aardvark");

Assert.AreEqual (2, list.Count);
Assert.AreEqual ("Aardvark", 1ist[0]);
Assert.AreEqual ("Mongoose", Tist[1]);

}

[Test, ExpectedException(ExceptionType = typeof(ArgumentOutOfRangeException))]

public void OutOfRangeIndexThrowsException()
{
RecentlyUsedList 1ist = new RecentlyUsedList();
list.Add("Aardvark");
list.Add("Mongoose") ;
list.Add("Aardvark");
string unreachable = list[3];

(nittal List Ls empty

Adodition of single ttem to
empty List Ls retaineo

Addition of distinct items Ls
retained L stack order

qunL’Laate ltems are moved to
front but not adoled

out of range Lnolex throws
exception

void require_that_sorting_nothing_does not_overrun()

int empty[] = { 2, 1 };
quickersort (empty + 1, 0);
assert (empty[0] == 2);
assert (empty[1] == 1);

Require that sorting nothing does not overrun

}

void require_that_sorting_single value_changes_nothing()

int single[] = {3, 2, 1};
quickersort(single + 1, 1);
assert(single[0] =
assert(single[1]
assert(single[2]

Require that sorting single value changes nothing

}

void require_that_sorting_identical_value_changes_nothing()

int identical[] = { 3, 2, 2, 2, 1 }; p . , . ’
auickersort(identical + 1, 3); Require that sorting Ldentical values changes nothing

assert(identical[0] =
assert(identical[1]
assert(identical[2]
assert(identical[3]
assert(identical[4]

I
HNNN W
SESES =23

}

void require_that_sorting_ascending_sequence_changes_nothing()

int ascending[] = { 2, -1, 0, 1, -2 };
quickersort(ascending + 1, 3);
assert(ascending[0] == 2);
assert(ascending[1] -1);
assert(ascending[2] 0);
assert(ascending[3] 1);

assert (ascending[4] -2);

Require that sorting ascending sequence changes nothing

}

void require_that_sorting_descending_sequence_reverses_it()

int descending[] = { 2, 1, 0, -1, -2 };
quickersort(descending + 1, 3);

Requive that sorting descending sequence reverses it

assert(descending[0] ==
assert(descending[1] ==
assert(descending[2] ==
assert(descending[3] ==
assert(descending[4] ==

}

2);
-1);
0);
1);
-2);

void require_that_sorting_mixed sequence orders_it()

int arbitrary[] = { 100,

quickersort(arbitrary +
assert(arbitrary[0] =

32, 12, 19, INT_MIN, 0 };
1, 4);

= 100);

assert(arbitrary[1] == INT_MIN);

assert(arbitrary[2]
assert(arbitrary[3]
assert(arbitrary[4]
assert(arbitrary[5]

Require that sorting mixed sequence orders it

» Example-based test cases are easy
to read and simple to write

= They have a linear narrative with a low
cyclomatic complexity, and are

therefore less tedious and error prone

= Coverage of critical cases is explicit

= Additional value coverage can be
obtained using complementary and
more exhaustive, data-driven tests

Start from zero

» There are a number of things that
should appear in tests

= Simple cases, because you have to
start somewhere

= Common cases, using equivalence
partitioning to identify representatives

= Boundary cases, testing at and around

= Contractual error cases, i.e., test rainy-
day as well as happy-day scenarios

* There are a number of things that
should not appear in tests

= Do not assert on behaviours that are
standard for the platform or language

— the tests should be on your code

= Do not assert on implementation
specifics — a comparison may return 1
but test for > 0 — or incidental
presentation — spacing, spelling, eic.

Refactoring (noun): a change made to the
internal structure of software to make it
easier to understand and cheaper to modify
without changing its observable behavior.

Refactor (verb): to restructure software by
applying a series of refactorings without
changing the observable behavior of the
software.

Martin Fowler, Refactoring

public class RecentlyUsedList

{

public RecentlyUsedList()
{

Tist = new List<string>();

public void Add(string newItem)

{
if (1ist.Contains(newItem))
{
int position = list.Index0f(newItem);
string existingItem = list[position];
list.RemoveAt (position);
list.Insert(0, existingItem);
}
else
{
list.Insert(0, newItem);
}
}
public int Count
{
get
{
int size = list.Count;
return size;
}
}
public string this[int index]
{
get
{
int position = 0;
foreach (string value in list)
if (position == index)
return value;
++position;
}
throw new ArgumentOutOfRangeException();
}
}

private List<string> list;

public class RecentlyUsedList

{

public void Add(string newItem)

{
list.Remove (newItem);
list.Add(newItem) ;
}
public int Count
{
get
{
return Tist.Count;
}
}
public string this[int index]
{
get
{
return list[Count - index - 1];
}
}

private List<string> list = new List<string>();

Functional T

Developmental

class access_control

{
public:
bool is Tocked(const std::basic_string<char> &key) const
{
std::list<std::basic_string<char> >::const_iterator found = std::find(locked.begin(), Tocked.end(), key);
return found != Tocked.end();

bool Tock(const std::basic_string<char> &key)

{
std::Tist<std::basic string<char> >::iterator found = std::find(Tocked.begin(), Tocked.end(), key);

if(found == locked.end())

locked.insert(locked.end(), key):;
return true;

return false;

bool unlock(const std::basic_string<char> &key)

{
std::list<std::basic_string<char> >::iterator found = std::find(locked.begin(), locked.end(), key);
if(found != locked.end())
{

locked.erase(found) ;
return true;

}

return false;

}

private:
std::1ist<std::basic_string<char> > locked;

}s

class access_control
{
public:
bool is Tocked(const std::string &key) const
{
return std::count(locked.begin(), locked.end(), key) != 0;

}
bool lock(const std::string &key)

if(is_locked(key))
{

return false;

}

else

Tocked.push_back(key) ;
return true;

}

bool unlock(const std::string &key)

{
const std::size t old size = locked.size();
locked.remove (key) ;
return Tocked.size() != old_size;

}
private:
std::Tist<std::string> locked;

A

class access_control

{
public:
bool is Tocked(const std::string &key) const

{

return locked.count(key) != 0;
}
bool lock(const std::string &key)
{

return locked.insert(key).second;

bool unlock(const std::string &key)
{

}

return locked.erase(key);

private:
std::set<std::string> locked;

=

= |deally, unit tests are black-box tests
= They should focus on interface contract

* They should not touch object internals
or assume contirol structure in functions

= White-box tests can end up testing
that the code does what it does

» They sometimes end up silencing
opportunities for refactoring, as well as
undermine aitempts at refactoring

Listening to Your Tests

= Tests and testability offer many forms
of feedback on code quality

= But you need to take care to listen (not
just hear) and understand what it

means and how to respond to it

= Don't solve symptoms — "Unit testing is
boring/difficult/impossible, therefore
don't do unit testing” — identify and
resolve root causes — "Why is unit
testing boring/difficult/impossible?"

= Unit testability is a property of
loosely coupled code

= Inability to unit test a significant portion
of the code base is an indication of

dependency problems

= If only a small portion of the code is
unit testable, it is likely that unit testing
will not appear to be pulling its weight
in contrast to, say, integration testing

ruESINGLETON
5’/ /4‘,’[: j,r;/’r///ﬁﬂ({’

= Unit testing also offers feedback on
code cohesion, and vice versa

= Overly complex behavioural objects
that are essentially large slabs of

proceduvural code

= Anaemic, underachieving objects that
are plain ol' data structures in disguise

= Objects that are incompletely
constructed in need of validation

NE‘% 13 4R *-
‘iiﬂ“ |

| e AMAZING
| BADGER SETT

We made it 10 times as big as
real! So you can ex[T .

underground and f]

GET THE NEW LIFE!

8 J Cc .
[! Nsiderate Constructors Scheite

for CHEERFUL LIFE . « IMproving the image

of Construction

0800 783 1423

www.ccscheme.org.uk

[Test]
public void Addition0fSingleItemToEmptyListIsRetained()

{

}

RecentlyUsedList 1ist = new RecentlyUsedList();
list.List = new List<string>():
list.Add("Aardvark");

Assert.AreEqual (1, list.List.Count);
Assert.AreEqual ("Aardvark”, Tist.List[0]);

[Test]
public void Addition0fDistinctItemsIsRetainedInStackOrder()

{

}

RecentlyUsedList 1ist = new RecentlyUsedList();
list.List = new List<string>():

list.Add ("Aardvark");

list.Add("Zebra");

list.Add("Mongoose") ;

Assert.AreEqual (3, list.List.Count);
Assert.AreEqual ("Mongoose", Tist.List[0]);
Assert.AreEqual ("Zebra", list.List[1]);
Assert.AreEqual ("Aardvark”, list.List[2]);

[Test]
public void DuplicateItemsAreMovedToFrontButNotAdded ()

{

RecentlyUsedList 1ist = new RecentlyUsedList();
list.List = new List<string>():
list.Add("Aardvark") ;

1ist.Add("Mongoose") ;

list.Add("Aardvark") ;

Assert.AreEqual (2, list.List.Count);
Assert.AreEqual ("Aardvark", Tist.List[0]):
Assert.AreEqual ("Mongoose", list.List[1]);

public class RecentlyUsedList

{
public void Add(string newItem)

{

list.Remove(newItem) ;
list.Insert(0, newItem);

}

public List<string> List

{
get

{

return list;

list = value;

}

private List<string> list;

Sleep all day. Party all night. Never grow old. Never die.
Its fun to be a vampire,

Don't ever invite a vampire
nto your house , you silly boy.
It renders you powerless.

JANICE FIS!

= Be careful with coverage metrics
= Low coverage is always a warning sign

= Otherwise, understanding what kind of
coverage is being discussed is key — is

coverage according to statement,
condition, path or value?

= And be careful with coverage myths

= Without a context of execution, plain
assertions in code offer no coverage

= Watch out for misatiribution

= If you have GUTs, but you fail to meet
system requirements, the problem lies
with system testing and managing

requirements, not with unit testing

= If you don't know what to test, then how
do you know what to code? Not
knowing how to test is a separate issue
addressed by learning and practice

= Don't shoot the messenger

= If the bulk of testing occurs late in
development, it is likely that unit testing
will be difficult and will offer a poor ROI

= |[f TDD or pre-check-in POUTing is
adopted for new code, but fewer
defects are logged than with late
testing on the old code, that is (1) good
news and (2) unsurprising

