UNIVERSITY OF

0),430)23D)

Indexed Programming

Jeremy Gibbons

aSCC LUl

Indexed Programming

1. Collections

public interface List {
vold add (int index, Object element);
boolean contains (Object o0);
Object get (Int index);
int size ();

}

Loss of precision:

List | = new ArraylList (); // ...which implements List
String s = "abc";

l.add (0, s); // upcasting when inserting
s = (String) l.get (0); // downcasting when retrieving

Indexed Programming

2. Generics

public interface List(E) {
void add (int index, E element);
boolean contains (Object o0);
E get (Int index);
int size ();

J

More precise code:

List(String) | = new ArrayList{String) ();
String s = "abc";

l.add (0,s); // mnoupcasting or...
s = l.get (0); // ...downcasting needed

This is called parametric polymorphism.

3. Algebraic datatypes

Expr

eval():Object

/\

Num

Add

int

Bool

boolean

IsZero

If

Indexed Programming

3.1. Expression datatype in Java

public abstract class Expr {
public abstract Object eval (); public class IsZero extends Expr {
J private Expr ¢;
public class Num extends Expr { public IsZero (Expr e){this.e = ¢; }
private Integer n; public Object eval () {
public Num (Integer n){this.n = n; } return new Boolean ((Integer) (e.eval ()) == 0);
public Object eval () {return n; } }
} }
public class Add extends Expr { public class If extends Expr {
private Expr X, y; private Expr b;
public Add (Expr x, Expr y) { private Expr t,e;
this.x = x; this.y = y; public If (Expr b, Expr t, Expr e) {
} this.b = b; this.t = t; this.e = ¢
public Object eval () { }
return (Integer) (x.eval ()) + (Integer) (y.eval ()); public Object eval () {
} if (((Boolean) b.eval ()).booleanValue ())
} return t.eval ();
public class Bool extends Expr { else
private Boolean b; return e.eval ();
public Bool (Boolean b){ this.b = b; } J
public Object eval () {return b; } }
}

Indexed Programming

3.2. Expression datatype in Haskell

data Expr :: % where

N :Int - Expr
B :Bool - Expr
Add :: Expr — Expr — Expr
IsZ . Expr — Expr

If ::Expr — Expr — Expr — Expr

data Result = NR Int | BR Bool
eval :: Expr — Result

eval (N n) = NR n

eval (B b) =BRbD

eval (Add x y) = case (eval x,eval y) of (NR m, NR n) — NR (m + n)
eval (IsZ x) = case (eval x) of NR n - NB (0 = n)

eval (If xy z) = case (eval x) of NB b — if b then eval y else eval z

4. Indexing

Loss of precision again: expressions of different ‘types’.

Note the explicit tagging and untagging in Haskell, and the casts in Java.
(And the lack of error-checking for ill-formed expressions!)

Can we capture the precise constraints in code, and exploit them?

Indexed Programming

4.1. Indexed datatypes

Parametrise the datatype (where parameter expresses represented type):

data Expr :: *x — * where

N uInt - Expr Int
B :: Bool — Expr Bool
Add :: Expr Int — Expr Int — Expr Int
IsZ :: Expr Int — Expr Bool

If ::Expr Bool — Expr a — Expr a — Expr a

Note that the parameter denotes a phantom type:
a value of type Expr a need not contain elements of type a.

Indexed Programming

4.2. Indexed programming

Specialised return types of constructors induce type constraints,
which are exploited in type-checking definitions.

eval :: Expr a — a

eval (N n) =n

eval (B b) =b

eval (Add x y) = eval x + eval y
eval (IsZ x) =0 = eval x

eval (If xy z) = if eval x then eval y else eval z

Note that all the tagging and untagging has gone,
and with it the possibility of run-time errors.

By explicitly stating a property formerly implicit in the code,
we have gained both in safety and in efficiency.

Indexed Programming 10

4.3. Indexed programming in Java

It can be done with Java (or C#) generics, but it’s not so pretty:

public class If (T) extends Expr{(T) {
private Expr(Boolean) b;
private Expr(T) t,¢;
public If (Expr{Boolean) b, Expr(T) t, Expr{T) e) {
this.b = b; this.t = t; this.e = ¢;
}
public T eval () {
if (b.eval ().booleanValue ()) return t.eval ();else return e.eval ();

J
)

(Actually, not quite all the checking can be done at compile-time;
sometimes some casts are still necessary.)

5. Other applications

Indexing by:

size: eg bounded vectors

shape: eg red-black trees

state: eg locking of resources

unit: eg physical dimensions

type: eg datatype-generic programming

proof: eg web applets

Indexed Programming

6. Application: indexing by size

Empty datatypes as indices (so S (S Z) is a type).

data Z
data S n

Size-indexed type of vectors:

data Vector :: * — * — *x where
VNIl :: Vector a Z
VCons:: a — Vector a n — Vector a (S n)

Size constraint on vzip is captured in the type:

vzip :: Vector a n — Vector b n — Vector (a,b) n
vzip VNIl VNIl = VNIl
vzip (VCons a x) (VCons by) = VCons (a,b) (vzip xy)

12

7. Application: indexing by shape

2-3-4 trees are perfectly-balanced search
trees.

Representable as red-black trees —
binary search trees in which:

e every node is coloured either red or
black

e every red node has a black parent

e cvery path from the root to a leaf
contains the same number of black
nodes (enforcing approximate balance)

Indexed Programming

In RBTree a c n,
e ais the element type;
e C is the root colour;

e nis the black height.

data R
data B

data RBTree:: x — % — * — * where
Empty . RBIreea B Z
Red ::RBTreeaBn-— a— RBIreeaBn — RBTreeaRn
Black ::RBTreeacn — a— RBTreeac' n— RBTreea B (S n)

14

Indexed Programming 15

8. Application: indexing by state

The ‘ketchup problem’:

close
data O
data Edge:: x — * — * where open
Open :: Edge O C Shake

Close :: Edge C O
Shake :: Edge C C

data Path: % — * — x where
Empty :: Path s s
PCons :: Edge x y — Pathy z — Path x z

scenario :: Path O O
scenario = PCons Open (PCons Shake (PCons Close Empty))

Indexed Programming

9. Application: indexing by unit

Suppose dimensions of non-negative powers of metres and seconds:
data Dim: * — % — % where
D:: Float — Dimm s

distance:: Dim (S Z) Z
distance = D 3.0

time:: Dim Z (S Z)
time=D 2.0

A dimensioned value is a Float with two type-level tags.

dadd::Dimms — Dimms —- Dimm s
dadd (Dx) (Dy) =D (x+y)

Now dadd time time is well-typed, but dadd distance time is ill-typed.

(More interesting to allow negative powers too, but for brevity...)

16

Indexed Programming

9.1. Type-level functions

Proofs of properties about indices:

data Add :: *x — * — % — *x where
AddZ :: Add Z nn
AddS :Add mnp — Add (S m) n (S p)

Used to constrain the type of dimensioned multiplication:

dmult :: (Add m; m> m, Add s1 S» S) —
Dimmy s - Dimm» s - Dimm s
dmult (_,_) (DXx) (Dy) =D (xXy)

Thus, type-index of product is computed from indices of arguments.

17

Indexed Programming

9.2. Inferring proofs of properties

Capture the proof as a type class (multi-parameter, with functional
dependency; essentially a function on types).

class Add mnp | mn-p

instance Add Z nn
instance Add mnp = Add (S m) n (S p)

Now the proof can be (type-)inferred rather than passed explicitly.

dmult :: (Add m; m> m, Add s1 $» S) =
Dimmy s1 - Dimm» s - Dimm s
dmult (Dx) (Dy) =D (xXy)

Note that the type class has no methods, so corresponds to an empty
dictionary; it can be optimized away.

18

Indexed Programming 19

10. Application: indexing by type

Generic programming is about writing programs parametrized by
datatypes; for example, a generic data marshaller.

One implementation of generic programming manifests the parameters as
some family of type representations.

For example, C’s sprintf is generic over a family of format specifiers.

data Format :: ¥ — * where

I :: Format a — Format (Int — a)
B:: Format a — Format (Bool — a)
S :: String — Format a — Format a

F:: Format String

A term of type Format a is a representation of the type a,
for various types a (such as Int — Bool — String) appropriate for sprintf.

Indexed Programming 20

10.1. Type-indexed dispatching

The function sprintf interprets the representation, generating a function
of the appropriate type:

sprintf :: Format a — a

sprintf fmt = aux id fmt where
aux :: (String — String) — Format a — a
aux [(I fmt) = An— aux (f o (show n+)) fmt
aux [(Bfmt) = Ab - aux (f o (show b+)) fmt
aux [(S s fmt) = aux (f o (s+)) fmt
aux [(F) =f""

For example, sprintf [13 True = "Int 1s 13, bool 1s True.", where

f :: Format (Int — Bool — String)
f=S"Int 1is "I (S", bool is " (B(S"." F))))

Indexed Programming 21

11. Application: indexing by proof

The game of Mini-Nim:
e a pile of matchsticks

e players take turns to remove one match or two
e player who removes the last match wins

Index positions by size and proof of destiny.

data Win
data Lose

data Position n r where
Empty :: Position Z Lose
Takel :: Position n Lose — Position (S n) Win
Take? :: Position n Lose — Position (S (S n)) Win
Fail :: Position n Win — Position (S n) Win — Position (S (S n)) Lose

12. Adding weight

We have shown some examples in Haskell with small extensions.
This is a very lightweight approach to dependently-typed programming.

Lightweight approaches have low entry cost, but relatively high continued
cost: encoding via type classes etc is a bit painful.

Tim Sheard’s QOmega is a cut-down version of Haskell with explicit
support for GADTs:

e kind declarations
e type-level functions
e statically-generated witnesses

Xi and Pfenning’s Dependent ML provides natural-number indices, and
incorporates decision procedures for discharging proof obligations.

These are more heavyweight approaches (such as McBride et al’'s Epigram).

13. Conclusions

e generics have become mainstream

e ...but so much more than parametric polymorphism!

o indexed programming: a form of lightweight dependent types
e Generic and Indexed Programming project at Oxford

e perhaps algebraic datatypes will jump the gap next? (cf Scala)

14. Shameless plug...

r ; 4 ’ . -
(S HaNa] Software Engineering at Oxford | Welcome to the Software Engineering Programme =
b i %_?J ",‘ hetp:/ fwww.softeng.ox.ac.uk/ L EG—J * software eng part time Q) % @ i

Bundled ¥ BBC headlines¥ LiU Google portal Science¥ ITY arXiv: C5% Oxford contacts softeng SEP publish THESY WCDSL OUCL

UNIVERSITY

OF OXFORD
SOFTWARE ENGINEERING
PROGRAMME

PART-TIME POSTGRADUATE STUDY

Contact us | Search | Site map | Login

Welcome to the Software Engineering Programme

About
?ZE%TZ Welcome to the Software Engineering Programme, a programme of advanced education and applied research at
Events the University of Oxford, offering access to the combined expertise and resources of the Oxford University
Contact Computing Laboratory and the Department for Continuing Education. The Programme has been supported by the
Engineering and Physical Sciences Research Council (EPSRC) since 1992.
Sugjtfctu; The Programme offers opportunities for part-time study, with courses in key areas such as object technology,
C;{'s}r;?:; software architecture, computer security, precise modelling, and development processes. Each course is delivered

Study

by an expert in the subject, and includes an intense teaching week of classes, practicals, and group work; class
sizes are kept small to facilitate interaction and to promote learning.

About
Awards These courses may be used as credit towards postgraduate qualifications—at Certificate, Diploma and Masters'
i i (MSc) level—from the University of Oxford. These qualifications are open to those with an appropriate combination
Py EBanE of academic and industrial experience; a first degree in computer science or software engineering is welcome, but
not necessary.
About
Projects The Programme is also a centre for research activity. The teaching staff are involved in a number of national and
SEnF:?r?EE international projects in the areas of: digital mammography; cancer clinical trials informatics; distributed computing

Collaboration

Resources

2008 Brochure
Documents
Forms

Done

for climate prediction; languages and tools for object model transformation; virtual research environments;
model-driven software engineering.

Read more about the Programme, short courses, part-time study, or research.

