
Indexed Programming

Jeremy Gibbons

Indexed Programming 2

1. Collections

public interface List {

void add (int index,Object element);

boolean contains (Object o);

Object get (int index);

int size ();

}

Loss of precision:

List l = new ArrayList (); // . . . which implements List

String s = "abc";

l.add (0, s); // upcasting when inserting

s = (String) l.get (0); // downcasting when retrieving

Indexed Programming 3

2. Generics

public interface List〈E〉 {

void add (int index,E element);

boolean contains (Object o);

E get (int index);

int size ();

}

More precise code:

List〈String〉 l = new ArrayList〈String〉();

String s = "abc";

l.add (0, s); // no upcasting or. . .

s = l.get (0); // . . . downcasting needed

This is called parametric polymorphism.

Indexed Programming 4

3. Algebraic datatypes

Num

int

Bool

boolean

Add IsZero If

Expr

eval():Object

2
1

3

Indexed Programming 5

3.1. Expression datatype in Java

public abstract class Expr {

public abstract Object eval ();

}

public class Num extends Expr {

private Integer n;

public Num (Integer n){this.n = n; }

public Object eval (){return n; }

}

public class Add extends Expr {

private Expr x, y;

public Add (Expr x,Expr y) {

this.x = x; this.y = y;

}

public Object eval () {

return (Integer) (x.eval ())+ (Integer) (y.eval ());

}

}

public class Bool extends Expr {

private Boolean b;

public Bool (Boolean b){this.b = b; }

public Object eval (){return b; }

}

public class IsZero extends Expr {

private Expr e;

public IsZero (Expr e){this.e = e; }

public Object eval () {

return new Boolean ((Integer) (e.eval ()) == 0);

}

}

public class If extends Expr {

private Expr b;

private Expr t, e;

public If (Expr b,Expr t,Expr e) {

this.b = b; this.t = t ; this.e = e;

}

public Object eval () {

if (((Boolean) b.eval ()).booleanValue ())

return t.eval ();

else

return e.eval ();

}

}

Indexed Programming 6

3.2. Expression datatype in Haskell

data Expr ::∗ where

N :: Int → Expr

B :: Bool → Expr

Add :: Expr → Expr → Expr

IsZ :: Expr → Expr

If :: Expr → Expr → Expr → Expr

data Result = NR Int | BR Bool

eval :: Expr → Result

eval (N n) = NR n

eval (B b) = BR b

eval (Add x y) = case (eval x, eval y) of (NR m,NR n)→ NR (m+ n)

eval (IsZ x) = case (eval x) of NR n → NB (0 ≡ n)

eval (If x y z) = case (eval x) of NB b → if b then eval y else eval z

Indexed Programming 7

4. Indexing

Loss of precision again: expressions of different ‘types’.

Note the explicit tagging and untagging in Haskell, and the casts in Java.

(And the lack of error-checking for ill-formed expressions!)

Can we capture the precise constraints in code, and exploit them?

Indexed Programming 8

4.1. Indexed datatypes

Parametrise the datatype (where parameter expresses represented type):

data Expr ::∗ → ∗ where

N :: Int → Expr Int

B :: Bool → Expr Bool

Add :: Expr Int → Expr Int → Expr Int

IsZ :: Expr Int → Expr Bool

If :: Expr Bool → Expr a → Expr a → Expr a

Note that the parameter denotes a phantom type:

a value of type Expr a need not contain elements of type a.

Indexed Programming 9

4.2. Indexed programming

Specialised return types of constructors induce type constraints,

which are exploited in type-checking definitions.

eval :: Expr a → a

eval (N n) = n

eval (B b) = b

eval (Add x y) = eval x + eval y

eval (IsZ x) = 0 ≡ eval x

eval (If x y z) = if eval x then eval y else eval z

Note that all the tagging and untagging has gone,

and with it the possibility of run-time errors.

By explicitly stating a property formerly implicit in the code,

we have gained both in safety and in efficiency.

Indexed Programming 10

4.3. Indexed programming in Java

It can be done with Java (or C#) generics, but it’s not so pretty:

public class If 〈T〉 extends Expr〈T〉 {

private Expr〈Boolean〉 b;

private Expr〈T〉 t, e;

public If (Expr〈Boolean〉 b,Expr〈T〉 t,Expr〈T〉 e) {

this.b = b; this.t = t; this.e = e;

}

public T eval () {

if (b.eval ().booleanValue ()) return t.eval (); else return e.eval ();

}

}

(Actually, not quite all the checking can be done at compile-time;

sometimes some casts are still necessary.)

Indexed Programming 11

5. Other applications

Indexing by:

size: eg bounded vectors

shape: eg red-black trees

state: eg locking of resources

unit: eg physical dimensions

type: eg datatype-generic programming

proof: eg web applets

Indexed Programming 12

6. Application: indexing by size

Empty datatypes as indices (so S (S Z) is a type).

data Z

data S n

Size-indexed type of vectors:

data Vector ::∗ → ∗ → ∗ where

VNil :: Vector a Z

VCons :: a → Vector a n → Vector a (S n)

Size constraint on vzip is captured in the type:

vzip :: Vector a n → Vector b n → Vector (a,b) n

vzip VNil VNil = VNil

vzip (VCons a x) (VCons b y) = VCons (a,b) (vzip x y)

Indexed Programming 13

7. Application: indexing by shape

2-3-4 trees are perfectly-balanced search

trees.
1 2 3 4 5 6 7 8 9

Representable as red-black trees —

binary search trees in which:

• every node is coloured either red or

black

• every red node has a black parent

• every path from the root to a leaf

contains the same number of black

nodes (enforcing approximate balance)

1 2 3 4 5 6 7 8 9

Indexed Programming 14

In RBTree a c n,

• a is the element type;

• c is the root colour;

• n is the black height.

data R

data B

data RBTree ::∗ → ∗ → ∗ → ∗ where

Empty :: RBTree a B Z

Red :: RBTree a B n → a → RBTree a B n → RBTree a R n

Black :: RBTree a c n → a → RBTree a c′ n → RBTree a B (S n)

Indexed Programming 15

8. Application: indexing by state

The ‘ketchup problem’:

opened closed

close

open
shake

data O

data C

data Edge ::∗ → ∗ → ∗ where

Open :: Edge O C

Close :: Edge C O

Shake :: Edge C C

data Path ::∗ → ∗ → ∗ where

Empty :: Path s s

PCons :: Edge x y → Path y z → Path x z

scenario :: Path O O

scenario = PCons Open (PCons Shake (PCons Close Empty))

Indexed Programming 16

9. Application: indexing by unit

Suppose dimensions of non-negative powers of metres and seconds:

data Dim ::∗ → ∗ → ∗ where

D :: Float → Dim m s

distance :: Dim (S Z) Z

distance = D 3.0

time :: Dim Z (S Z)

time = D 2.0

A dimensioned value is a Float with two type-level tags.

dadd :: Dim m s → Dim m s → Dim m s

dadd (D x) (D y) = D (x + y)

Now dadd time time is well-typed, but dadd distance time is ill-typed.

(More interesting to allow negative powers too, but for brevity. . .)

Indexed Programming 17

9.1. Type-level functions

Proofs of properties about indices:

data Add ::∗ → ∗ → ∗ → ∗ where

AddZ :: Add Z n n

AddS :: Add m n p → Add (S m) n (S p)

Used to constrain the type of dimensioned multiplication:

dmult :: (Add m1 m2 m,Add s1 s2 s)→

Dim m1 s1 → Dim m2 s2 → Dim m s

dmult (,) (D x) (D y) = D (x × y)

Thus, type-index of product is computed from indices of arguments.

Indexed Programming 18

9.2. Inferring proofs of properties

Capture the proof as a type class (multi-parameter, with functional

dependency; essentially a function on types).

class Add m n p | m n → p

instance Add Z n n

instance Add m n p ⇒ Add (S m) n (S p)

Now the proof can be (type-)inferred rather than passed explicitly.

dmult :: (Add m1 m2 m,Add s1 s2 s)⇒

Dim m1 s1 → Dim m2 s2 → Dim m s

dmult (D x) (D y) = D (x × y)

Note that the type class has no methods, so corresponds to an empty

dictionary; it can be optimized away.

Indexed Programming 19

10. Application: indexing by type

Generic programming is about writing programs parametrized by

datatypes; for example, a generic data marshaller.

One implementation of generic programming manifests the parameters as

some family of type representations.

For example, C’s sprintf is generic over a family of format specifiers.

data Format ::∗ → ∗ where

I :: Format a → Format (Int → a)

B :: Format a → Format (Bool → a)

S :: String → Format a → Format a

F :: Format String

A term of type Format a is a representation of the type a,

for various types a (such as Int → Bool → String) appropriate for sprintf .

Indexed Programming 20

10.1. Type-indexed dispatching

The function sprintf interprets the representation, generating a function

of the appropriate type:

sprintf :: Format a → a

sprintf fmt = aux id fmt where

aux :: (String → String)→ Format a → a

aux f (I fmt) = λn → aux (f ◦ (show n++)) fmt

aux f (B fmt) = λb → aux (f ◦ (show b++)) fmt

aux f (S s fmt) = aux (f ◦ (s++)) fmt

aux f (F) = f ""

For example, sprintf f 13 True = "Int is 13, bool is True.", where

f :: Format (Int → Bool → String)

f = S "Int is " (I (S ", bool is " (B (S "." F))))

Indexed Programming 21

11. Application: indexing by proof

The game of Mini-Nim:

• a pile of matchsticks

• players take turns to remove one match or two

• player who removes the last match wins

Index positions by size and proof of destiny.

data Win

data Lose

data Position n r where

Empty :: Position Z Lose

Take1 :: Position n Lose→ Position (S n) Win

Take2 :: Position n Lose→ Position (S (S n)) Win

Fail :: Position n Win → Position (S n) Win → Position (S (S n)) Lose

Indexed Programming 22

12. Adding weight

We have shown some examples in Haskell with small extensions.

This is a very lightweight approach to dependently-typed programming.

Lightweight approaches have low entry cost, but relatively high continued

cost: encoding via type classes etc is a bit painful.

Tim Sheard’s Ωmega is a cut-down version of Haskell with explicit

support for GADTs:

• kind declarations

• type-level functions

• statically-generated witnesses

Xi and Pfenning’s Dependent ML provides natural-number indices, and

incorporates decision procedures for discharging proof obligations.

These are more heavyweight approaches (such as McBride et al’s Epigram).

Indexed Programming 23

13. Conclusions

• generics have become mainstream

• . . . but so much more than parametric polymorphism!

• indexed programming: a form of lightweight dependent types

• Generic and Indexed Programming project at Oxford

• perhaps algebraic datatypes will jump the gap next? (cf Scala)

Indexed Programming 24

14. Shameless plug. . .

