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Indexed Programming

1. Collections

public interface List {
vold add (int index, Object element);
boolean contains (Object o0);
Object get (Int index);
int size ();

}

Loss of precision:

List | = new ArraylList (); // ...which implements List
String s = "abc";

l.add (0, s); // upcasting when inserting
s = (String) l.get (0); // downcasting when retrieving
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2. Generics

public interface List(E) {
void add (int index, E element);
boolean contains (Object o0);
E get (Int index);
int size ();

J

More precise code:

List(String) | = new ArrayList{String) ();
String s = "abc";

l.add (0,s); // mnoupcasting or...
s = l.get (0); // ...downcasting needed

This is called parametric polymorphism.



3. Algebraic datatypes
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3.1. Expression datatype in Java

public abstract class Expr {
public abstract Object eval (); public class IsZero extends Expr {
J private Expr ¢;
public class Num extends Expr { public IsZero (Expr e){this.e = ¢; }
private Integer n; public Object eval () {
public Num (Integer n){this.n = n; } return new Boolean ((Integer) (e.eval ()) == 0);
public Object eval () {return n; } }
} }
public class Add extends Expr { public class If extends Expr {
private Expr X, y; private Expr b;
public Add (Expr x, Expr y) { private Expr t,e;
this.x = x; this.y = y; public If (Expr b, Expr t, Expr e) {
} this.b = b; this.t = t; this.e = ¢
public Object eval () { }
return (Integer) (x.eval ()) + (Integer) (y.eval ()); public Object eval () {
} if (((Boolean) b.eval ()).booleanValue ())
} return t.eval ();
public class Bool extends Expr { else
private Boolean b; return e.eval ();
public Bool (Boolean b){ this.b = b; } J
public Object eval () {return b; } }
}
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3.2. Expression datatype in Haskell

data Expr :: % where

N :Int - Expr
B :Bool - Expr
Add :: Expr — Expr — Expr
IsZ . Expr — Expr

If ::Expr — Expr — Expr — Expr

data Result = NR Int | BR Bool
eval :: Expr — Result

eval (N n) = NR n

eval (B b) =BRbD

eval (Add x y) = case (eval x,eval y) of (NR m, NR n) — NR (m + n)
eval (IsZ x) = case (eval x) of NR n - NB (0 = n)

eval (If xy z) = case (eval x) of NB b — if b then eval y else eval z



4. Indexing

Loss of precision again: expressions of different ‘types’.

Note the explicit tagging and untagging in Haskell, and the casts in Java.
(And the lack of error-checking for ill-formed expressions!)

Can we capture the precise constraints in code, and exploit them?
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4.1. Indexed datatypes

Parametrise the datatype (where parameter expresses represented type):

data Expr :: *x — * where

N uInt - Expr Int
B :: Bool — Expr Bool
Add :: Expr Int — Expr Int — Expr Int
IsZ :: Expr Int — Expr Bool

If ::Expr Bool — Expr a — Expr a — Expr a

Note that the parameter denotes a phantom type:
a value of type Expr a need not contain elements of type a.
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4.2. Indexed programming

Specialised return types of constructors induce type constraints,
which are exploited in type-checking definitions.

eval :: Expr a — a

eval (N n) =n

eval (B b) =b

eval (Add x y) = eval x + eval y
eval (IsZ x) =0 = eval x

eval (If xy z) = if eval x then eval y else eval z

Note that all the tagging and untagging has gone,
and with it the possibility of run-time errors.

By explicitly stating a property formerly implicit in the code,
we have gained both in safety and in efficiency.
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4.3. Indexed programming in Java

It can be done with Java (or C#) generics, but it’s not so pretty:

public class If (T) extends Expr{(T) {
private Expr(Boolean) b;
private Expr(T) t,¢;
public If (Expr{Boolean) b, Expr(T) t, Expr{T) e) {
this.b = b; this.t = t; this.e = ¢;
}
public T eval () {
if (b.eval ().booleanValue ()) return t.eval ();else return e.eval ();

J
)

(Actually, not quite all the checking can be done at compile-time;
sometimes some casts are still necessary.)



5. Other applications

Indexing by:

size: eg bounded vectors

shape: eg red-black trees

state: eg locking of resources

unit: eg physical dimensions

type: eg datatype-generic programming

proof: eg web applets



Indexed Programming

6. Application: indexing by size

Empty datatypes as indices (so S (S Z) is a type).

data Z
data S n

Size-indexed type of vectors:

data Vector :: * — * — *x where
VNIl :: Vector a Z
VCons:: a — Vector a n — Vector a (S n)

Size constraint on vzip is captured in the type:

vzip :: Vector a n — Vector b n — Vector (a,b) n
vzip VNIl VNIl = VNIl
vzip (VCons a x) (VCons by) = VCons (a,b) (vzip xy)

12



7. Application: indexing by shape

2-3-4 trees are perfectly-balanced search
trees.

Representable as red-black trees —
binary search trees in which:

e every node is coloured either red or
black

e every red node has a black parent

e cvery path from the root to a leaf
contains the same number of black
nodes (enforcing approximate balance)
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In RBTree a c n,
e ais the element type;
e C is the root colour;

e nis the black height.

data R
data B

data RBTree:: x — % — * — * where
Empty . RBIreea B Z
Red ::RBTreeaBn-— a— RBIreeaBn — RBTreeaRn
Black ::RBTreeacn — a— RBTreeac' n— RBTreea B (S n)

14
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8. Application: indexing by state

The ‘ketchup problem’:

close
data O
data Edge:: x — * — * where open
Open :: Edge O C Shake

Close :: Edge C O
Shake :: Edge C C

data Path: % — * — x where
Empty :: Path s s
PCons :: Edge x y — Pathy z — Path x z

scenario :: Path O O
scenario = PCons Open (PCons Shake (PCons Close Empty))
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9. Application: indexing by unit

Suppose dimensions of non-negative powers of metres and seconds:
data Dim: * — % — % where
D:: Float — Dimm s

distance:: Dim (S Z) Z
distance = D 3.0

time:: Dim Z (S Z)
time=D 2.0

A dimensioned value is a Float with two type-level tags.

dadd::Dimms — Dimms —- Dimm s
dadd (Dx) (Dy) =D (x+y)

Now dadd time time is well-typed, but dadd distance time is ill-typed.

(More interesting to allow negative powers too, but for brevity...)

16
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9.1. Type-level functions

Proofs of properties about indices:

data Add :: *x — * — % — *x where
AddZ :: Add Z nn
AddS :Add mnp — Add (S m) n (S p)

Used to constrain the type of dimensioned multiplication:

dmult :: (Add m; m> m, Add s1 S» S) —
Dimmy s - Dimm» s - Dimm s
dmult (_,_) (DXx) (Dy) =D (xXy)

Thus, type-index of product is computed from indices of arguments.

17
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9.2. Inferring proofs of properties

Capture the proof as a type class (multi-parameter, with functional
dependency; essentially a function on types).

class Add mnp | mn-p

instance Add Z nn
instance Add mnp = Add (S m) n (S p)

Now the proof can be (type-)inferred rather than passed explicitly.

dmult :: (Add m; m> m, Add s1 $» S) =
Dimmy s1 - Dimm» s - Dimm s
dmult (Dx) (Dy) =D (xXy)

Note that the type class has no methods, so corresponds to an empty
dictionary; it can be optimized away.

18
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10. Application: indexing by type

Generic programming is about writing programs parametrized by
datatypes; for example, a generic data marshaller.

One implementation of generic programming manifests the parameters as
some family of type representations.

For example, C’s sprintf is generic over a family of format specifiers.

data Format :: ¥ — * where

I :: Format a — Format (Int — a)
B:: Format a — Format (Bool — a)
S :: String — Format a — Format a

F:: Format String

A term of type Format a is a representation of the type a,
for various types a (such as Int — Bool — String) appropriate for sprintf.
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10.1. Type-indexed dispatching

The function sprintf interprets the representation, generating a function
of the appropriate type:

sprintf :: Format a — a

sprintf fmt = aux id fmt where
aux :: (String — String) — Format a — a
aux [ (I fmt) = An— aux (f o (show n+)) fmt
aux [ (Bfmt) = Ab - aux (f o (show b+)) fmt
aux [ (S s fmt) = aux (f o (s+)) fmt
aux [ (F) =f""

For example, sprintf [ 13 True = "Int 1s 13, bool 1s True.", where

f :: Format (Int — Bool — String)
f=S"Int 1is "I (S", bool is " (B(S"." F))))
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11. Application: indexing by proof

The game of Mini-Nim:
e a pile of matchsticks

e players take turns to remove one match or two
e player who removes the last match wins

Index positions by size and proof of destiny.

data Win
data Lose

data Position n r where
Empty :: Position Z Lose
Takel :: Position n Lose — Position (S n) Win
Take? :: Position n Lose — Position (S (S n)) Win
Fail :: Position n Win — Position (S n) Win — Position (S (S n)) Lose



12. Adding weight

We have shown some examples in Haskell with small extensions.
This is a very lightweight approach to dependently-typed programming.

Lightweight approaches have low entry cost, but relatively high continued
cost: encoding via type classes etc is a bit painful.

Tim Sheard’s QOmega is a cut-down version of Haskell with explicit
support for GADTs:

e kind declarations
e type-level functions
e statically-generated witnesses

Xi and Pfenning’s Dependent ML provides natural-number indices, and
incorporates decision procedures for discharging proof obligations.

These are more heavyweight approaches (such as McBride et al’'s Epigram).



13. Conclusions

e generics have become mainstream

e ...but so much more than parametric polymorphism!

o indexed programming: a form of lightweight dependent types
e Generic and Indexed Programming project at Oxford

e perhaps algebraic datatypes will jump the gap next? (cf Scala)
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