
© Software Acumen Limited 2007-08, http://www.software-acumen.com/

When Good Architecture
Goes Bad

Mark Dalgarno
Software Acumen

Blog: The Variation Point
(http://blog.software-acumen.com/)

Email: mark@software-acumen.com

http://www.software-acumen.com/
http://www.software-acumen.com/
http://blog.software-acumen.com/
http://blog.software-acumen.com/

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

(Approximate) Agenda

 Introduction
Architectural smells
The cost of decay
Causes of decay
Preventing decay
The value of architectural integrity
Close

http://www.software-acumen.com/

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

Introduction - Software architectural decay

 Architecture as-is diverges from
architecture as-intended.

 Results in a decrease in the ability of a
system’s software architecture to meet
its stakeholder requirements.

http://www.software-acumen.com/

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

Introduction - Example of architectural decay

 Researchers compared two versions of ANT
– System built in three layers taskdefs, ant, utils.

 V1.4.1 (11 October 2001)
– Layers well-separated.
– ant layer monolithic but small.

 V1.6.1 (12 February 2004)
– ant layer dependent on taskdefs (upward

dependencies).
– ant layer now very large but still monolithic.

See http://www.stsc.hill.af.mil/crosstalk/2005/11/0511SangalWaldman.html for more information
on

The study and http://codefeed.com/blog/?p=98 for a brief early Ant project history. Accessed
19/1/08

http://www.software-acumen.com/
http://www.stsc.hill.af.mil/crosstalk/2005/11/0511SangalWaldman.html

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

Architectural Smells - Structural Smells

 Code in the wrong place
 Problems in class, package, sub-system

and layer relationships
 Insufficient decomposition
 Too much decomposition
 Obsolescence
 Overgeneralization

http://www.software-acumen.com/

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

Architectural Smells - Whiffs (or subtle smells)

 No one on the team can tell you (or agree on)
what the as-intended architecture is.

 The time, effort and risk in implementing
further changes increases – productivity and
quality decrease.

 It becomes harder to predict the effect of
further changes on cost, schedule and quality.

 Further changes typically cause the as-is
architecture to deviate further from the as-
intended architecture – the situation becomes
worse.

http://www.software-acumen.com/

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

Architectural Smells - Exercise 1

 In groups, identify one or more
examples of architectural decay from
your own experience.

 Were any smells (or whiffs) associated
with these examples?

http://www.software-acumen.com/

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

The cost of architectural decay – an experiment

 STSC conducted a study with two variants of a
mature software system (50k LOC).

 Variant 1 – existing system with structural defects.
 Variant 2 – system with architecture restructured to

remove defects.
 Both teams given same maintenance task (adding

approx. 3k of code).
 Team 1 needed over twice as long as team 2 to

complete the task. Team 1’s results contained more
than 8 times the number of errors than the work
submitted by team 2.

http://www.software-acumen.com/

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

The cost of architectural decay

 Lowering quality lengthens development
time – but is business aware of this?
– Do they care or will they worry about

getting out of ‘debt’ later?
 Beat competitor to market.
 Grab market share.
 Win contract on the cheap & charge more later.

– Can be hard to communicate state of
architecture to business
 Hard to understand architectural issues.
 Blame culture – how did it get that bad?

http://www.software-acumen.com/

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

The cost of architectural decay – Exercise 2

 Read Case Study 1.

 In groups discuss whether it is credible
that architectural decay led to this
significant decrease in productivity?

 What do you think of the company's
proposed solution?

http://www.software-acumen.com/

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

Causes of decay

 Change brings decay
– Functional / non-functional changes.
– Environmental changes (inc. team, tools).
– Worse if architecture doesn’t support change.

 Ignorance, misunderstandings, mistakes
 Hard to visualize as-is architecture to see if it

matches the as-intended architecture
 Insufficient value placed on evolvability and

ongoing architectural integrity

http://www.software-acumen.com/

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

Causes of decay - Exercise 3

 Read case study 2.

 In groups, discuss whether the
architecture will decay when the system
is maintained.

 Justify your answer.

http://www.software-acumen.com/

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

Preventing decay – a skeleton process

 Start out with a sustainable architecture.
– Assess it using change scenarios.

 Visualize the architecture as the
software evolves.
– Compare as-is to as-intended

 Use metrics to highlight architectural
smells.

 Refactor to maintain integrity.

http://www.software-acumen.com/

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

Preventing decay - Exercise 4

 In groups, list things that could have
been done to slow or prevent
architectural decay in one of your own
examples from Exercise 1.

 Include anything you tried that did or
didn’t work at the time.

http://www.software-acumen.com/

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

Slowing decay – what other people said

 10 experienced architects / developers completed
a small survey for Software Acumen

 Most had not heard of tools to help visualize
software architecture

 Desired features of such tools were:
4. Visibility of software architecture as-is
5. Interrelationship comprehension

6. Ability to check and enforce architectural integrity

7. Advance visibility of the effects of refactorings

8. Identification of components to enable re-use

9. Identification of opportunities for refactoring

10. Elimination of cyclic dependencies to improve code quality

http://www.software-acumen.com/
http://www.software-acumen.com/

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

The value of integrity - the problem

 It’s hard to measure the (money, time,
organisational, personal) benefit of
architectural maintenance activities.

 Architectural integrity pays off over the
long term in many cases.

 You may get a quicker return if you
spend money elsewhere.

http://www.software-acumen.com/

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

The value of architectural integrity –
Exercise 5

 Revisit one or more of your earlier examples
of architectural decay.

 What was the (money, time, organisational,
personal) cost of letting the architecture
decay?

 If you could go back in time what steps would
you take to reduce these costs? How effective
do you think these steps would be?

http://www.software-acumen.com/

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

Things to ponder…

 “The average developer is too stupid to use architectural
analysis techniques” – unnamed CTO, October 2006

 Who’s responsible for architectural integrity?
 When you specify an architecture do you spend enough

time considering how it would be affected by change?
 “It’s all about communication” – SPA 2008 participant
 Does it matter if architecture decays as long as the tests

pass?
 How bad should a software system’s architecture be

before you scrap it?
 Architectural decay is depreciation of the software

owner’s assets – should this be reflected on the owner’s
balance sheet?

http://www.software-acumen.com/

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

Recommended Reading

 Refactoring in Large Software Projects:
Performing Complex Restructurings
Successfully, Martin Lippert, Stephen
Roock, Wiley 2006

 Lehman’s laws of software evolution
M M Lehman, J F Ramil, P D Wernick, D E Perry, W M Turski, "Metrics and Laws of
Software Evolution – The Nineties View," metrics, p. 20, Fourth International Software
Metrics Symposium (METRICS'97), 1997

http://www.software-acumen.com/

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

Summary

 Any successful software system is likely to
evolve.

 Unless preventative work is undertaken the
architecture of the system will decay.

 As the architecture decays the cost and risk of
further development rises.

 There are lots of different things that can be
done to slow architectural decay – you (just)
need to work out what the best value
approach is.

http://www.software-acumen.com/

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

Thanks go to…

 Rob Machin, UBS Investment Bank
 Thomas Eisenbarth, Axivion GmbH
 Klaus Marquardt, Drager Medical Systems

GmbH
 Paul Clements, SEI
 SPA 2008 workshop participants

 Email mark@software-acumen.com for these
slides. Visit http://blog.software-acumen.com/
for session write up.

http://www.software-acumen.com/
mailto:mark@software-acumen.com
http://blog.software-acumen.com/

