
l e a n
software development

www.poppendieck.comMary Poppendieckmary@poppendieck.com

The Software Development Pendulum
Those who cannot remember the past are condemned to repeat it.

George Santayana

January 072 Copyright©2006 Poppendieck.LLC l e a n

1960’s
The Software Crisis

Airline Reservation Systems
Earliest “Real Time” Systems

Grandiose marketing vision
Software complexity overwhelmed projects

Hardware response time fell short

IBM TSS/360 Operating System
Announced in 1965 – canceled in 1971

Multics Operating System (MIT, GE, Bell Labs)
Led to Unix when Bell Labs pulled out (1969)

Large Software Projects
Late, over budget, full of bugs

[This hasn’t changed….]

1968: NATO Conference
on Software Engineering

IBM 360-91 - 1968

January 073 Copyright©2006 Poppendieck.LLC l e a n

1960’s
Apollo

“I believe that this nation should
commit itself to achieving the goal,
before this decade is out, of landing
a man on the moon and returning
him safely to the Earth.”

John F. Kennedy – 1961

“That's one small step for man, one
giant leap for mankind.”

Neil Armstrong – 1969

May 25, 1961

July 21, 1969

January 074 Copyright©2006 Poppendieck.LLC l e a n

1960’s
Apollo Guidance Computer

Instructions wired into computer

Two digit commands

Everything was an experiment

Extensive preparation for failures and recovery

January 075 Copyright©2006 Poppendieck.LLC l e a n

StructureStructure
Structured Analysis and Design
Top-Down Programming
Provably Correct Code
Sequential Life Cycle

Foundational Ideas
“Go-to Considered Harmful” – Dijkstra 1968
Waterfall [doesn’t work] – Royce 1970
Information Hiding – Parnas 1971
“Mythical Man Month” – Brooks 1975

Large Software Projects
Still late, over budget, and full of bugs
[Despite Software Engineering….]
But small projects improve

1970’s
Software Engineering

RequirementsRequirements

DesignDesign

ImplementationImplementation

VerificationVerification

MaintenanceMaintenance

January 076 Copyright©2006 Poppendieck.LLC l e a n

1970’s
ARPANET

DARPA (Defense Advanced Research Projects Agency)
Charter: ‘high-risk, high-gain’ research

Intergalactic Network – J.C.R. Licklider
A decade of protocol experimentation

E-mail is born
A decade of header wars

The ’70’s also brought us
Microprocessors
Smalltalk & C
The mouse
The Apple Computer
WordStar
VisiCalc

January 077 Copyright©2006 Poppendieck.LLC l e a n

1980’s
User Programming

4th Generation Languages
Report Generators

Personal Computers
Word Processors
Spreadsheets

Sequential life-cycle looses favor
“Life Cycle Concept Considered Harmful”

Daniel McCracken & Michael Jackson 1982

Prototyping Replaces Specifying
Spiral Life-Cycle

Barry Boehm 1988

Large Software Projects
Still late, over budget, and full of bugs
[No surprise…]
Most projects are small and do well

Determine
objectives,
alternatives,
constraints.

Plan next
phase.

Risk/Analysis

Prototype

O&S
AT

I&T

Unit
Test

Build

Develop, verify
next level product.

January 078 Copyright©2006 Poppendieck.LLC l e a n

1980’s
Personal Computers

1982: Personal Computer is Time’s “Man of the Year”
Affordable computers enter the home
Endless possibilities ahead

Software products gain stature
Microsoft fortunes rise as IBM fades
Surge of software start-up companies

Computers are used for control
Microprocessors control hardware
Computers schedule and track activities

ARPANET grows up
TCP/IP & DNS established
E-mail & ftp are standardized
Spread outside the US
MILNET split off, NSF takes over
Commercial use not allowed

January 079 Copyright©2006 Poppendieck.LLC l e a n

1990’s
Rigorous Process

High Profile Software Failures
Therac-25 (1985-1987)

London Ambulance Dispatch System (1992)

Denver Baggage Handling System (1993)

Long list of expensive, canceled projects

CMM
Levels of Process Maturity

“Do It Right the First Time.”

Focused on custom development

Y2K Consumes Corporate IT

Large Software Projects
Still late, over budget, and full of bugs

But Software Products fare better
Early release of beta software

Frequent upgrades to add features

January 0710 Copyright©2006 Poppendieck.LLC l e a n

1990’s
Internet

World Wide Web (1989)
Hypertext invented at CERN
to deal with constant change

Internet is born (1990)
ARPANET shut down
NSF permits commercial use

Mosaic – The first Browser (1992)
Developed at NCSA in Champaign Urbana
Modified the CERN hypertext approach

The Internet Explodes
The dot-com boom
Rapid software development

1998

19941995

January 0711 Copyright©2006 Poppendieck.LLC l e a n

2000’s
Consumer Technologies

Technology moves from home to office
Discussion Lists, Blogs, Social Networks
IM, VoIP (Skype, GoogleTalk)
Search, Desktop Search, Streaming Video
Handheld Devices, Memory Sticks
Mashups (Combining Multiple Sites)
Hosted Solutions (Sales, Supply Chain)

Agile Software Development
Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

Large Software Projects
Still late, over budget, and full of bugs
[Why is this not a surprise?...]
But they have fallen out of favor

Another Silver Bullet?

January 0712 Copyright©2006 Poppendieck.LLC l e a n

Breakthrough Innovations
in Software Development

Apollo Guidance Computer
Vision, leadership, team skill, & dedication

ARPANET
Robustness: distributed, independent agents

E-mail
Standards evolve through broad-based discussion

PC Software
Great software focuses on customers & evolves over time

Internet Browser
Designed to accommodate constant change

Search / Auction / Shopping / News / Blogs / VoIP
Easy to use, simple, and free!

January 0713 Copyright©2006 Poppendieck.LLC l e a n

Brilliant ideas emerge over time.
They need the time and space to develop.
They come from interactions of engaged people.

Sequential processes don’t work.
Great development requires learning cycles.
Predictability is compatible with learning.

Big software projects will always be:
Late, over budget, and full of bugs.
Small projects are much safer.

Incremental delivery gives superior financial results.
Lower investment, earlier breakeven, more profit.
Potential for competitive advantage.

Why Agile?

January 0714 Copyright©2006 Poppendieck.LLC l e a n

A Financial Model

Software by Number by Mark
Denne and Jane Cleland-HuangSelf-Funding

Breakeven

In
ve

st
m

en
t

P
ay

ba
ck

P
ro

fit

Time

C
os

t

January 0715 Copyright©2006 Poppendieck.LLC l e a n

Staged Releases

Time

C
os

t

Release 1 Profit
Release 2 Profit

Total Profit

January 0716 Copyright©2006 Poppendieck.LLC l e a n

Increased Profit

Time

C
os

t
Profit

Investment

B
re

ak
ev

en

Single
Release

S
el

f-F
un

di
ng

B
re

ak
ev

en

Software by Number by Mark
Denne and Jane Cleland-Huang

Staged
Releases

January 0717 Copyright©2006 Poppendieck.LLC l e a n

Lean Software Development

Just-in-Time Flow
Deliver feature sets – rapidly – in small increments
Delay decisions to the Last Responsible Moment
Pay down technical debt, including regression deficit

Stop-the-Line Quality
Mistake-proof with test harnesses
Synchronize early, synchronize often
Establish architectural vision and development standards

Respect for People
Create a self-directing work environment
Engage everyone on the team
Provide leadership

Global Optimization
Focus on the Whole Product
Measure UP

Speed

Quality Low Cost

l e a n
software development

www.poppendieck.comMary Poppendieckmary@poppendieck.com

Thank You!

More Information: www.poppendieck.com

