
l e a nl e a n
software development

www.poppendieck.comMary Poppendieckmary@poppendieck.commary@poppendieck.commary@poppendieck.com

Stop-the-Line Quality

Lessons from Lean

The Toyoda’s

Sakichi Toyoda (1867-1930)
� Extraordinary inventor

of automated looms

� Crucial Idea: Stop-the-Line

Kiichiro Toyoda (1894-1952)

Sakichi Toyoda
(1867-1930)

l e a n

Kiichiro Toyoda (1894-1952)
� Bet the family fortune on

automotive manufacturing

� Crucial Idea: Just-in-Time

Eiji Toyoda (1913-Present)

� 50 years of Toyota leadership

� Championed the development of

The Toyota Production System

April 072 Copyright©2007 Poppendieck.LLC

Kiichiro Toyoda
(1894-1952)

Eiji Toyoda

(1913-Present)

The Toyota Production

System

Taiichi Ohno

The Toyota Production System, 1988 (1978)

� Eliminate Waste

� Just-in-Time Flow

� Expose Problems

l e a n

� Expose Problems

� Stop-the-Line Culture

Shigeo Shingo

Study Of ‘Toyota’ Production System, 1981

� Non-Stock Production

� Single Digit Setup

� Zero Inspection

� Mistake-Proof Every Step

April 073 Copyright©2007 Poppendieck.LLC

Taiichi Ohno
(1912-1990)

Shigeo Shingo
(1909 – 1990)

Just-in-Time Flow

l e a nApril 074 Copyright©2006 Poppendieck.LLC

Lesson:

Stop trying to maximize
“resource” utilization.

Lesson:

Stop trying to maximize
machine productivity.

Stop the Line Culture

1920’s:
� Idea: Unattended looms

� Invention: Looms that
stopped the moment a
thread broke.

l e a nApril 075 Copyright©2006 Poppendieck.LLC

Lessons:
�The greatest productivity comes

from not tolerating defects.

�Create ways to detect defects
the moment they occur.

Engaged People

“Only after American carmakers had exhausted

every other explanation for Toyota’s success –

an undervalued yen, a docile workforce,

Japanese culture, superior automation –

l e a n

Japanese culture, superior automation –

were they finally able to admit that Toyota’s real

advantage was its ability to harness the intellect

of ‘ordinary’ employees.”

April 076 Copyright © 2007 Poppendieck.llc

“Management Innovation” by Gary Hamel,

Harvard Business Review, February, 2006

The system is going to be

around for a LONG time.

Saving money in development at

the expense of production makes

no sense.

Systems Thinking

Software is rather useless

– all by itself

Software is embedded

In hardware

l e a n

no sense.

60-80% of coding occurs after

first release to production.

Developing a change-tolerant

system is fundamental.

April 077 Copyright©2007 Poppendieck.LLC

In hardware

In a process

In an activity

The product [or process] must
be developed as a system.

Dev Production

Lesson 1:

Learn to See Waste

Put on Customer Glasses

l e a nApril 078 Copyright © 2007 Poppendieck.llc

Myth:

Early Specification Reduces Waste

Features and Functions Used in a Typical System

Sometimes
16%

Rarely
19%

Often or AlwaysOften or Always
Used: 20%Used: 20%

l e a nApril 079 Copyright © 2007 Poppendieck.llc

Standish Group Study Reported at XP2002 by Jim Johnson, Chairman

Always

7%

Often

13%

Never
45%

Rarely or Never
Used: 64%

l e a nApril 0710 Copyright©2007 Poppendieck.LLC

Keep it SimpleKeep it Simple

Reduce Risk

The Biggest Risk is Work-in-Process

�The Big BangBig Bang is Obsolete

Sources of Risk

�Un-coded specifications

l e a n

�Un-coded specifications

�Un-tested code

�Un-integrated code

�Code that has not been used in production

The Best Risk Mitigation is Low Work-in-Process

�Test early, integrate often, fail fast.

April 0711 Copyright © 2007 Poppendieck.llc

Lesson 2:

Don’t Tolerate Defects

There are Two Kinds of There are Two Kinds of Inspection*Inspection*
1. Inspection to Find Defects – WASTE

2. Inspection to Prevent Defects – Essential

The Role of QAThe Role of QA
* Shigeo Shingo

l e a n

The Role of QAThe Role of QA

The job of QA is not to swat misquotes,

The job of QA is to put up screens.

A quality process builds quality into the code

� If you routinely find defects during verification

– your process is defective.

April 0712 Copyright©2006 Poppendieck.LLC

Where do defects come from?

Change The SystemChange The System

90% of all defects caused by the system*90% of all defects caused by the system*
1. They are not caused by individuals.

2. System problems are management problems.

* Dr. W. Edwards Deming

l e a n

Change The SystemChange The System

Mistake-Proof Every Step

� Detect defects the

moment they occur

Don’t track defects on a list

� Find them and fix them

Test FIRST

April 0713 Copyright © 2007 Poppendieck.llc

Case Study

Techniques:
� Trouble log with different behaviors depending on

development or field platform and severity of error.

� Dual-targeting: Bracket HW-dependent code and
run only with target HW, mock-out otherwise.

Mobile Spectrometer to Analyze Grain

l e a n

run only with target HW, mock-out otherwise.

� Isolate HW driver code, use scripts to test it with HW
� Became the HW acceptance tests

� Isolate and test domain-level code (eg communications)

� Special tests for unique domains (eg math algorithms)

Result:
� In 3 years, only 51 defects (18 critical, 23 moderate,

10 cosmetic), with a maximum of 2 open at once!

� Productivity 3X similar embedded software teams.

� HW engineers trusted SW and used it to debug HW.

April 0714 Copyright©2006 Poppendieck.LLC

Taken from: Taming the Embedded

Tiger – Agile Test Techniques for

Embedded Software, Nancy Van

Schooenderwoert & Ron Morsicato,

ADC 2004 & Embedded Agile Project

by the Numbers with Nubies, Nancy

Van Schooenderwoert, Agile 2006

Building Block Disciplines

Development

� Coding Standards

� Configuration Management

� Tool

� Team Practices

l e a n

� Team Practices

� One Click Build

� Continuous Integration

� Automated Testing

� Unit Tests

� Acceptance Tests

�� STOPSTOP if the tests don’t pass

� Nested Synchronization

Deployment

� Production-Hardy Code

� Automated Release Packages

� Automated Installation

� “Done” means the code is

running live in production.

April 0715 Copyright©2007 Poppendieck.LLC

Nested Synchronization

�Every few minutes
� Build & run unit tests
�� STOPSTOP if the tests don’t pass

�Every day
� Run acceptance tests

Every Release:

Deployed and Running in Production

Every Iteration:

Deployment-Ready Code

l e a n

�� STOPSTOP if the tests don’t pass

�Every week
� Run production testes
�� STOPSTOP if the tests don’t pass

�Every iteration
� Deployment-ready code

�Every Release
� Deploy and run in production

April 0716 Copyright©2007 Poppendieck.LLC

Weekly Integration Tests

Daily Acceptance Tests

10 minute

build test

Make it FlawlessMake it Flawless

Types of Testing

Acceptance Acceptance
TestsTests

Business Intent

UsabilityUsability
Testing Testing

ExploratoryExploratory

Business Facing

S
u

p
p

o
rt

 P
ro

g
ra

m
m

in
g

C
ri

ti
q

u
e

P
ro

d
u

ct

Automated:

Every Day

Manual:

As Early as

Practical

l e a nApril 0717 Copyright©2006 Poppendieck.LLC

Business Intent
(Design of the Product)

ExploratoryExploratory
TestingTesting

Unit Unit
TestsTests

Developer Intent
(Design of the Code)

PropertyProperty
TestingTesting

Response,

Security,

Scaling,

Resilience

F
ro

m
 B

ri
a
n
 M

a
ri
c
k

Technology Facing

S
u

p
p

o
rt

 P
ro

g
ra

m
m

in
g

C
ri

ti
q

u
e

P
ro

d
u

ct

Automated:

Every Build

Tool-Based:

As Early as

Possible

Myth: Automated Testing takes too

much time/costs too much money

Team struggling with legacy java code

10 defects / 1000 NCSS*

Affected company’s reputation and threatened survival

Adopted Test Driven Development

l e a n

Adopted Test Driven Development

Defects dropped to <3 / 1000 NCSS

� Including all untouched legacy code

� 80-90% improvement in quality

Productivity more than tripled

* Non-comment Source Statements- --- From Mike Cohn
April 0718 Copyright © 2007 Poppendieck.llc

Test Driven Development

Doesn’t cost, it pays!

Is a design technique

�Cleaner Design

�Acceptance Test Driven Design

l e a n

�Acceptance Test Driven Design

� Matches the design to the structure of the domain

�Unit Test Driven Design

� Simpler, More Understandable Code

�Self-verifying

�Protects from unintended consequences

�For the life of the code

April 0719 Copyright © 2007 Poppendieck.llc

A Test Harness to

Simulate Integration Testing

�Create a harness to simulate the

remote system at each integration

point in the system under test.

�Design a devious harness with

nasty, malicious behavior that will

beat up the system.

A harness for a Web Services call
� Refuse all connections

� Refuse all credentials

� Listen but time out

� Connect very slowly

� Send nothing but RESET’s

� Accept connection but don’t send data
(or don’t acknowledge data)

l e a n

beat up the system.

�Try to provoke all possible failure

modes in any remote system at all

seven OSI layers.

�A single harness can work for many

networked applications, simulating

similar bad behavior.

� See “Release It! Design and Deploy

Production-Ready Software” Michael

Nygard, Pragmatic Press, 2007

(or don’t acknowledge data)

� Accept a request and send response
headers but no body

� Report data received but
never empty the buffer

� Send 1 byte of data every 30 sec.

� Send megabytes of data when kilobytes
are expected

� Send unexpected formats

� Etc.

April 0720 Copyright©2007 Poppendieck.LLC

Avoid Technical Debt

Anything that makes code difficult to change

(The usual excuse for batches & queues)

�Complexity
The cost of complexity is exponential.

Regression Deficit

l e a n

�Regression Deficit
Every time you add new features
the regression test grows longer!

�Unsynchronized Code Branches
The longer two code branches remain
apart, the more difficult merging will be.

April 0721 Copyright©2007 Poppendieck.LLC

Testing

Perfection is OneOne--PiecePiece--Flow:Flow:

Any useful feature set – at any time – in any order
Let Let it Flowit Flow

Case Study:

Rally Software Development
“We found ourselves doing waterfall in
time-boxed increments. During the first
year we had a lot of technical debt.”

Testing:

� JUnit for unit tests

� HTTPUnit for testing the GUI

�Gradually moved page flow
platform to Spring and AJAX

� Tested Spring with FIT & Fitnesse

� Tested AJAX by using JIFFIE to
bind Java to IE. Wrote tests in Java
to test AJAX through the browser.

�Hardening was reduced to 1 week.

l e a n

� HTTPUnit for testing the GUI

� Not capable of testing page flows

� Most GUI testing manual

� All acceptance testing manual

� 6 weeks to develop, 2 weeks to
test, and not all testing was done.

“The test load was a killer,
and it just kept going up.”

�Hardening was reduced to 1 week.

�Responsibilities changed:

� Testers: FIT tables & JIFFIE tests

� Developers: FIT fixtures, JUnit
tests, and GUI test harness

�Now release monthly, pre-hardened!

April 0722 Copyright©2007 Poppendieck.LLC

Ryan Martens, CTO

Lesson 3:

Focus on Learning

Cycles of Discovery

Products emerge through

iterations of learning.

Relentless Improvement

Engaged people design and

improve their own processes.

Observations

l e a nApril 07 Copyright©2007 Poppendieck.LLC

Hardware

& Code
Comparison

Current

System

Capability

System

Under

Development

Current

Design

Intent

Development

Team

Current

Needs
Customer

Not Consistent

Modify Hypothesis

Consistent

Publish Results

Observations

Knowledge

Results PredictionsExperiments

Hypothesis

ScientificScientific

FeedbackFeedback

MethodMethod

Iterative Development

Daily

Iteration

Execution

Iteration

Planning

l e a nApril 0724 Copyright©2007 Poppendieck.LLC
features

desirable

list of

Prioritized

Road Map:

Stories

& Tests

Every 2-4

Weeks
Deployment

- Ready

Software

One Iteration

Ahead

Feedback

Relentless Improvement

Regular Work Team Meetings
� Every week or

� Every iteration

Data-Based Problem Analysis
� Don’t guess

Kai

l e a n

� Don’t guess

� Find and analyze the data

� Experiment!

April 0725 Copyright©2007 Poppendieck.LLC

Change

Zen

Good

Refactoring: Relentless

Improvement of the Code Base

JustJust--inin--time NOT Justtime NOT Just--inin--CaseCase

� Start with what you know is needed now

� Add features only when you know you need them

� Refactor: Simplify the code based on what you know now

l e a n

Maintain a Simple, Clean Design

� No features ahead of their time

� No features after their time

� No Repetition

Safety First!

� You can’t refactor without test harnesses.

April 0726 Copyright©2007 Poppendieck.LLC

Time to Refactor

Lesson 4

Change the Measurements

Fujitsu took over help desk of BMI (airline) in 2001

� Fujitsu analyzed all calls

� Found that 26% of calls were for printers

� Could not print boarding passes / luggage tags

� Quantified the cost of the calls

l e a n

� Quantified the cost of the calls

� Tracked the time to fix the problems

� Measured impact on business of the problem

� Convinced BMI management to get better printers

� Printer calls were down 80% in 18 months

� Total calls were down 40% in 18 months

� Major savings in flight operations

� What’s Wrong With This Picture?

April 0727 Copyright©2007 Poppendieck.LLC

From “Lean Consumption”

By James P. Womack & Daniel T. Jones

Harvard Business Review, March 2005

Measure UP

Decomposition
� You get what you measure

� You can’t measure everything

� Stuff falls between the cracks

� You add more measurements

� You get local sub-optimization

Aggregation
� You get what you measure

� You can’t measure everything

� Stuff falls between the cracks

� You measure UP one level

� You get global optimization

l e a n

� You get local sub-optimization

Example
� Measure Cost, Schedule, & Scope

� Quality & Customer Satisfaction
fall between the cracks

� Measure these too!

� You get global optimization

Example
� Measure Cost, Schedule, & Scope

� Quality & Customer Satisfaction
fall between the cracks

� Measure Business Case
Realization instead!

April 0728 Copyright©2007 Poppendieck.LLC

From to ! From to !

Three System Measurements

Average Cycle TimeAverage Cycle Time

� From Product Concept

� To First Release
or

� From Feature Request

The Business CaseThe Business Case

� P&L or

� ROI or

� Goal of the
Investment

l e a n

� To Feature Deployment
or

� From Defect

� To Patch

April 0729 Copyright © 2007 Poppendieck.llc

Customer SatisfactionCustomer Satisfaction

� A measure of
sustainability

l e a nl e a n
software development

www.poppendieck.comMary Poppendieckmary@poppendieck.commary@poppendieck.commary@poppendieck.com

Thank You!

