auto_value: Transfer Semanticsfor Value Types

Richard Harris

The problem of eliminating unnecessary copies & tiat many programmers have addressed at one
time or another. These notes propose an alternttiome of the most common techniques, copy-on-
write. We'll begin with a discussion on smart peist and why we need more than one type of them.
We'll then look at the relationship between smaihiers and the performance characteristics of some
simple string implementations, including one thapmorts copy-on-write. I'll suggest that a differen
choice of smart pointer better captures our intan show that what we were trying to do doesn't
achieve half as much as we thought it would.

Finally, 1 hope to show that whilst the problem set out to solve turns out to be a bit of a nonédss
this technique has a side effect that can be ebgpldo dramatically improve the performance of some
complex operations.

notes::notes()

I'd like to begin by recalling Jackson’s Rules ghtnization.

Rule 1: Don't do it.
Rule 2 (for experts only): Don’'t do it yet.

This is probably a little presumptuous of me, bdtike to add something:

Harris’s Addendum: Nyah, nyah. | can’t hear you.
I'll admit it's not very mature, but | think it aacately reflects how we atlkeally feel. No matter how
much a programmer preaches, like Knuth, that preraadptimisation is the root of all evil, | firmly

believe that deep down they cannot help but redaiefficient code.
Don't believe me? Well, ask yourself which of tleldwing function signatures you’'d favour:

void f(std::vector<std::string> strings);
void f(const std::vector<std::string> &strings);

Thought so.

But you mustn’t feel bad about it, the desire tit@voptimal code is good thing. And | can prove it.

In their seminal 2004 paper, Universal Limits om@utation, Krauss and Starkman demonstrated that
the universe will only be able to process anoth8641G% bits during its lifetime. Count them. Just
1.35x16%. If Moore’s Law continues to hold true, we'll ranit of bits in 600 years.

So we can stop feeling guilty about our oft-crig@il drive to optimise, because wasted CPU cyckes ar
accelerating the heat death of the universe.

Will nobody think of the children?

Act responsibly.

Optimise.

OK, that'’s a little disingenuous. Knuth actuallydsthat in 97% of cases we should forget about kmal
efficiencies. | suspect that we’'d all agree thaingisconst references by default for value types
generally falls into the 3% that we shouldn’t igaofhere is, after all, a world of difference betwe
choosing the more efficient of two comparably comxpstatements and significantly increasing the
complexity of your code in the name of a relativetyall efficiency gain.

There is a grey area though. Sometimes it reallyadgh increasing the complexity of your code for
relatively small gains. Especially when the pafacusource of inefficiency occurs regularly within
your code base and you can hide that complexitinbednnice tightly defined class interface.

These notes are going to take a look at those pnofiligate of wastrels, temporaries.
But since the direct route rarely has the mostrésing views, we're going to set off with a dissios
on smart pointers.

auto_ptr

Let's start by taking a look at the definitionaito_ptr

%

template<typename X>
class auto_ptr

public:
typedef X element_type;

explicit auto_ptr(X *p = 0) throw();

auto_ptr(auto_ptr &p) throw();

template<class Y> auto_ptr(auto_ptr<Y> &p) throw(
auto_ptr(auto_ptr_ref<X> p) throw();

~auto_ptr() throw();

auto_ptr & operator=(auto_ptr &p) throw();
template<class Y> auto_ptr & operator=(auto_ptr<¥Y
auto_ptr & operator=(auto_ptr_ref<X> p) throw();

template<class Y> operator auto_ptr_ref<Y>() thro
template<class Y> operator auto_ptr<Y>() throw();

X & operator*() const throw();
X * operator->() const throw();
X * get() const throw();

X * release() throw();
void reset(X *p = 0) throw();

private:
X*X_;

> &p) throw();

w();

It's a little bit more complicated than you'd expémn't it?

This is because, like HAL, it has been driven eserslightly barking mad from being given two
competing responsibilities. The first of thesedidi¢ the lifetime of an object to the scope in ebhit’'s

used.

For example:

void
I()
const auto_ptr<T> t(new T);

} ﬁobject is destroyed here

The destructor of thauto_ptr

no matter how we leave the scope.
The second responsibility is to safely transfeeots from one location to another.
For example:

deletes the object it references, ensuring thiatptoperly destroyed

auto_ptr<T>
f0
return auto_ptr<T>(new T);

void
g(auto_ptr<T>t)

...
} /lobject is destroyed here

void

hQ
auto_ptr<T>t;
t=1(); /lownership is transferred from f here
a(t); /lownership is transferred to g here

The two roles are distinguished by the constnesthefuto_ptr interface. The const member
functions ofauto_ptr manage lifetime control, whereas the non-const negnfinctions manage
ownership transfer.

For example, by making the variatilan the functiorh in the previous example const, we can ensure
that the compiler will tell us if we accidentallytto transfer its ownership elsewhere:

void

hQ

{
C onst auto_ptr<T>t;
t=1(); /loops
a(t); /loops

And herein lies the problem. We want coastto_ptrs to jealously guard their contents, so we
make the arguments to the transfer constructor amsignment operataron-const references. But,
unnamed temporaries, such as function return vatasonly be bound tmonst references, making it
difficult to transfer ownership of an object outasfe function and into another.

For example:

void

h0

a(fO); /Inow I'm confused

This is where the mysterioasito_ptr_ref class comes to our rescue. You'll note @atio_ptr
has a non-const conversionaoto_ptr_ref and that there’s a conversion constructor thaggain
auto_ptr_ref . S0 a non-const unnamed temporary can be convéotexh auto_ptr_ref ,
which will in turn transfer ownership to auto_ptr via the conversion constructor.

Neat, huh?

Well, perhaps. But we could almost certainly dadyeby giving each oauto_ptr's personalities
its own body. We'll do this by introducing a nevpgyscoped_ptr , to manage object lifetimes and
stripping those responsibilities froauto_ptr

The definition ofscoped_ptr is as follows:

template<typename X>
class scoped_ptr

{
public:
typedef X element_type;

explicit scoped_ptr(X *p = 0) throw();
explicit scoped_ptr(const auto_ptr<X> &p) throw()
~scoped_ptr() throw();

X & operator*() const throw();
X * operator->() const throw();
X * get() const throw();

auto_ptr<X> release() throw();

private:
scoped_ptr(const scoped_ptr &); /Inot implemented
scoped_ptr & operator=(const scoped_ptr &); /not implemented

X*X_;

Those in the know will see the similarity with theostscoped_ptr (www.boost.org). This is only
natural since | pretty much just swiped it fromrthe

As with the originaluto_ptr , the constructors take ownership of the objects@d to them and the
destructor destroys them. The principal changeh# it is no longer legal to copy or assign to
scoped_ptrs (the unimplemented private copy constructor argigasnent operator are there to
suppress the automatically generated ones).

We can continue to usgoped_ptr to tie object lifetime to scope:

void
f0

{
scoped_ptr<T> t(new T);
1l

} ﬁobject is destroyed here

But we can no longer use it to transfer ownership:

scoped_ptr<T> //oops, no copy constructor

return scoped_ptr<T>(new T);

void
g(scoped_ptr<T> t) /loops, no copy constructor

...
}

void

h0

{
scoped_ptr<T> t;)
t = scoped_ptr<T>(new T); /loops, no assignment operator

Now let's have a look at how giving up responsibifor lifetime control changeauto_ptr

template<typename X>
class auto_ptr

{
public:
typedef X element_type;

explicit auto_ptr(X *p = 0) throw();

auto_ptr(const auto_ptr &p) throw();

template<class Y> auto_ptr(const auto_ptr<Y> &p) throw();
~auto_ptr() throw();

const auto_ptr & operator=(const auto_ptr &p) con st throw();
template<class Y>
const auto_ptr & operator=(const auto_ptr<Y> &p) const throw();

X & operator*() const throw();
X * operator->() const throw();

X * release() const throw();

private:
mutable X *x_;

OK, so | lied a little.

We haven't so much lost the ability to control abjifetimes withauto_ptr as made it a little less
attractive. The constructors still take ownershighe objects passed to them and the destructor sti
destroys them, but holding on to them is difficult.

This is because the object pointer is nowtable, allowing it to be changed even through const
member functions. Usually mutable is reserved faembers that can change whilst the object
maintains the appearance of constness (cachesxé&nple), an idea typically described as logical
constness. Here, to be honest, it's a bit of a hafkneed to tell the compiler to abandon all netiof
constness forauto_ptrs and unfortunately we can't do that (unnamed temupes rear their
problematic heads again). So we lie to the compiée tell it that “no really, this function is cdhs
and use mutability to change the object pointemayy

We can still us@uto_ptr to transfer object ownership from one place tatlago

auto_ptr<T>
f
return auto_ptr<T>(new T);

void
g(auto_ptr<T>1)

Il...
} /lobject is destroyed here

void

h0
auto_ptr<T> t;
t=1(); /lownership is transferred from f here
g(t); /lownership is transferred to g here

But we might run into problems if we try to uséatcontrol object lifetime:

T
hQ

{

const auto_ptr<T>t;

a(t); /lownership is transferred to g here
return *t; /loops

}

It's precisely because this neauto_ptr is so slippery, that I've added a release metlodobst’'s
scoped_ptr . This enables us to use tbeoped_ptr to control the lifetime of the object within a
function andauto_ptr to control its transfer during function return.

For example:

auto_ptr<T>
f0

scoped_ptr<T>t;
Il...
return t.release();

void

?0
) scoped_ptr<T> t(f());

Henceforth, when we refer tauto_ptr , we will mean this new version, having the sole
responsibility of ownership transfer.

shared_ptr

Another approach to managing object lifetimes ialtow multiple references to share ownership of an
object. This is achieved by keeping the objecteaftr as long as something is referring to it.

There are two common techniques used to do thescohrect approach and the easy approach. Guess
which one we're going to look at.

That'’s right. Reference counting.

Reference counting works by keeping a count ofthmber of active references to an object and
deleting it once this count drops to zero. Eactetarmnew reference is taken, the count is increrdente
and each time a reference is dropped, the cout#deemented. This is generally achieved by requirin
the referencing entity to explicitly register itgérest or disinterest in the object.

The chief advantage of using reference countinignflement shared ownership semantics is that it's
relatively simple compared to the alternative.

The chief disadvantage occurs when an object dlrectindirectly holds a reference to itself, suh
when two objects hold references to each othethigisituation, the reference count will not fal t
zero unless one of the objects explicitly drops thference to the other. In practice, it can be
extremely difficult to manually remove mutual refaces since the ownership relationships can be
arbitrarily complex. If you would like to bring é#tle joy into someone’s life, ask a Java programme
about it.

We can automate much of the book-keeping requiceddference counting by creating a class to
manage the process for us. In another shameleglaylief plagiarism I'm going to call this class
shared_ptr

template<typename X>
class shared_ptr

{
public:
typedef X element_type;

shared_ptr() throw();
template<class Y> explicit shared_ptr(Y * p);
shared_ptr(const shared_ptr &p) throw();

template<class Y> shared_ptr(const shared_ptr<Y> &p) throw();
template<class Y> explicit shared_ptr(const auto_ ptr<Y> &p);
~shared_ptr() throw();
shared_ptr & operator=(const shared_ptr &p) throw 0;
template<class Y>

shared_ptr & operator=(const shared_ptr<Y> &p) throw();
template<class Y>

shared_ptr & operator=(const auto_ptr<Y> &p) th row();

X & operator*() const throw();
X * operator->() const throw();
X * get() const throw();

void reset(X *p = 0) throw();
bool unique() const throw();
long use_count() const throw();

private:
X*X_;
size_t *refs_;

The reference count is pointed to by the membelabbirrefs _ and is incremented whenever a
shared_ptr is copied (either through assignment or constoagtiand decremented whenever a
shared_ptr s redirected (either through assignment or resmedestroyed.

For example:
void
f0
shared_ptr<T> t(new T); II*refs_==
{
shared_ptr<T> u(t); [I*refs_==
...
} IFrefs_==
...
} I*refs_==0, object is destroyed here

Reference counting blurs the distinction betweegeaibifetime control and transfer by allowing many
entities to simultaneously “own” an object.

shared_ptr<T>
f

return shared_ptr<T>(new T);

void
g(shared_ptr<T>1t) I[++*refs_
Il...
} /--*refs_
void
hQ
shared_ptr<T>t;
t=1(); /lownership is transferred from f here
a(t); /lownership is shared with g here

The sequence of events in the above example ruicd @ss:

callh
shared_ptr()

call f

new T

shared_ptr(T *) IlFrefs_= 1
shared_ptr(const shared_ptr &) [[++*refs _
~shared_ptr 1I--*refs _
exit f

shared_ptr::operator=(const shared_ptr &) //++*refs _
~shared_ptr 1I--*refs _
callg

shared_ptr(const shared_ptr &) /[++*refs _
~shared_ptr [I--*refs _
exitg

exith

~shared_ptr 1I--*refs _

As you can see, at the endmfthe reference count is zero and the object isegumently destroyed.
Since the object has more than one owner we mestiee caution when using it or, more specifically,
when changing its state.

For example:

void
f(shared_ptr<T> t)

il..
}

void
90
{

shared_ptr<T> t(new T);

shared_ptr<const T> u(t);

f(t); /lownership is shared with f here
//state of u is uncertain here

Of course, this is just pointer aliasing in a gpifiew suit and as such shouldn’t come as much of a
surprise. | meamobody makes that mistake these days, do they?

Well, almost nobody.

Well, certainly not standard library vendors.

Well, probably not standard library vendors.

Well, probably not very often.

string

The last time | saw this problem was in a vendgptiad std::string . Well, not this problem
exactly, but it was related to incorrect use oérefice counted objects. | shan’t name names, buatsit

a company you all know and many of you respect. Whignally tracked down what was causing my
program to crash | was stunned.

Now you may be wondering how these sorts of probleould possibly relate &iring , after all it's

a value type not an object type. The reason isthigparticulaistring used a common optimisation
techniqgue known as copy-on-write, or COW for shamd this technique relies upon reference
counting.

Before we describe how COW works, let’s take a labk naive implementation of a string class:

class string

{

public:
typedef char value_type;
typedef char * iterator;
typedef char const * const_iterator;
typedef size_t size_type;
I...

string();
string(const char *s);
string(const string &s);

string & operator=(const string &s);
string & operator=(const char *s);

const_iterator begin() const;
const_iterator end() const;
iterator begin();

iterator end();

...

private:
size_type size_;
scoped_array<char> data_;

A scoped_array (identical toscoped_ptr , except that it usedelete(] instead ofdelete)
ensures that the data is deleted when a string@desf scope.

The constructors are pretty straightforward:

{string::string() : size_(0), data_(0)
}

string::string(const char *s) : size_(strlen(s)),
data_(size)

{
std::copy(s, s_size_, data_.get());
}
string::string(const string &s) : size_(s.size_),
data_(new charfsi ze_])

{
std::copy(s.data_.get(), s.data_.get()+size_, dat a_.get());
}

The copy and conversion constructors allocate niximgs whose lifetimes are managed by the
scoped_array membemata_ . The constructor bodies then simply copy the g&in
Nothing particularly surprising.

The assignment operators are a little more comgleoygh. These days the recommended way to
implement assignment is with the copy and swapidio
This is usually expressed as:

T&
T::operator=(const T &t)

T tmp(t);
swap(tmp);
return *this;

}

The chief advantage of this approach (besidelasive simplicity) is that it is guaranteed toveahe
object in its original state if an exception isa¥wn during the copy operation. This is because arétd
commit the change until we swap the object with temporary copy and the call wwap is

guaranteed not to throw.

In the case oftring , theswap member function could be defined as:

void
string::swap(string &s)

std::swap(size_, s.size_);
std::swap(data_, s.data_);

Unfortunatelystd::swap will need to assign a new value to badta ands.data_ and since
scoped_array doesn’t allow us to rebind the pointer, it doegrovide an assignment operator or
reset member function. If we wardcoped_array to consider classes as scopes, we'll need to
provide some mechanism to enable assignment.

Adding assignment operatorsgcoped_array would dramatically weaken its guarantee that it wi
only ever point to one array.

Thankfully, we can achieve what we want by addingwap member function instead, defined as
follows:

void
scoped_array::swap(scoped_array &a)

std::swap(x_, a.x_);

This still weakensscoped_array ’'s guarantee, but in a way that's less appealinguse for
ownership transfer than an assignment operatogsmt member function. Well, that's my story and
I'm sticking to it.

We can now redefinstring 's swap member:

void
string::swap(string &s)

std::swap(size_, s.size_);
data_.swap(s.data_);

Now, the naive approach is perfectly good for sktiihgs, but those string copies in the constmggto
and indirectly in the assignment operator, statbad pretty ominous in the face of very long sgsn
For example, consider the sequence of events whbengsthe result of a function call:

string

f0
string s(“hello, world”);
return s;

void

90

.

}strmg s =f();

So what exactly happens when we ¢all

10

call g

call f

copy “hello, world” into s
copy s into return temporary
exit f

copy return temporary into s
exitg

Yikes. | count two completely unnecessary copieghef data. Now that's not such a problem for
“hello, world”, but will hit hard for the King JanseBible, for example.

So how does copy-on-write help?

Well, it seeks to eliminate unnecessary copiesdfgrdng them until they can no longer be avoided.
This is typically when an element of the stringatsout to be changed, hence the name. Until that
moment, a “copy” of a string simply holds a referemo the original.

This is related to, but subtly different from, nefece counting for shared ownership. Unlike shared
ownership, COW allows multiple references to thelartying data of an object only so long as the
external behaviour is unaffected.

With shared ownership, we expect multiple refersncebe able to change the observed state of the
object. With COW, this must be avoided at all coste use reference counting merely to avoid
making multiple copies of provably identical data.

For example:
void
f0
string s1(“hello, world™);
string s2(s1); /Is2 can hold a reference to s1's data here
std ::cout << s2 << std::endl;
s2.replace(0, 5, “goodbye”); //s2 must copy sl's data here
}

Until we actually change the state &2 in the last line off , the behaviour of the function is
unchanged whetharl ands2 share their state or not.

Let's have a look at how we might implement a gtrifass that supports COW:

class string

public:
typedef char value_type;
typedef char * iterator;
typedef char const * const_iterator;
typedef size_t size_type;
...

string();
string(const char *s);
string(const string &s);

string & operator=(const string &s);
string & operator=(const char *s);

const_iterator begin() const;
const_iterator end() const;
iterator begin();

i/}erator end();

private:)
size_type size_;
shared_array<char> data_;

%

11

The point to note about this definition is that tdata is stored in ahared_array (like
shared_ptr , except that it usedelete[]]) rather than asscoped_ptr . With this we will share,
rather than copy, data for as long as possible.

To see how this works, let’s take a closer loo& 8w member functions.

First, the constructors:

?tring::string() : size_(0), data_(0)
}

string::string(const char *s) : size_(strlen(s)),
data_(new char[size D

{
std::copy(s, s+size_, data_.get());

{string::string(const string &s) : size_(s.size_), d ata_(s.data_)

}

The sharp-eyed amongst you will have noticed that dopy constructor is superfluous since the
compiler generated version would have done ex#oysame thing.

The important point though is that when we constastring with a C-style point to character array,
the data is copied, whereas when we copy consrsicing |, the data is shared.

Now let's have a look at the two flavours bégin to see how we make sure that we don't
accidentally change string’s value through this shared data:

string::const_iterator
string::begin() const

return data_.get();

Well, the first version is pretty simple. Since veereturning aconst_iterator (defined as a
pointer to const), it's not possible to change the contents ofdtiing so we can simply return the
pointer to the start of the character data.

Grantedconst_cast could throw a spanner in the works, but | doubtcewe would be too upset if
we simply declared casting between iterator typetefined behaviour and ignored the problem.
Clearly, it's the non-const version of the functibat is of interest:

string::iterator
string::begin()

if(data_.get() && !data_.unique())
char *s = data_.get();

data_.reset(new char[size_]);
std::copy(s, s+size_, data_.get());

return data_.get();

And here we see the mechanism at work. If more tdmestring is referring to the data, we copy it
before we allow a means to change it to escape s@ihee check for uniqueness and subsequent copy
must be present in every function that presenigpgortunity to change the string.

In the following example:

12

void

f0

const string s1(“hello, world");
string s2(s1);
string::iterator i = s2.begin();
%=y

}

we have the following sequence of events:

construct s1
copy “hello, world”

construct s2
share “hello, world”

s2.begin

fail uniqueness check
copy data

return iterator

assign 'y’ to start of s2

Given that we have already established the shasprfegour eyes, | have no doubt that you have raced
ahead of me and spotted that this code isn’'t reynéitdor purpose.

To hammer home why, consider the following example:

void

f0

string s2(“hello, world”);

string::iterator i = s2.begin();

const string s1(s2);

=y, /loops, s1 has changed too

Let's take a look at the sequence of events thie:ti

construct s2
copy “hello, world”

s2.begin
pass uniqueness check
return iterator

construct s1
share “hello, world”

assign 'y’ to start of s1 and s2

It seems there was a potential alias that we ogked, the iterator itself.

This is harder than | expected. Perhaps | shoulthdre forgiving of my unnamed library vendor.
Worse still, even if we correctly identify and pegot all possible aliases, we still have made aerath
sweeping assumption. Namely, tk&ings will only be referred to by a single thread.

In a multi-threaded program, it is quite possililatta COW string’s data could be manipulated by

more than one thread at the same time. To illesttad problems that this can lead to, consider what
happens when two copies are made of a string.

13

void
f(const string &s)

string s1(s);

}

void

g(const string &s)
string g1(s);

}

In a single threaded prograimandg must be called sequentially:

string s(“hello, world”);
f(s);

g(s);

leading to the following sequence of events:

construct s
copy “hello, world”

call f

share “hello, world”
release “hello, world”
exit

callg

share “hello, world”
release “hello, world”
exitg

and everything goes smoothly.

For multi-threaded programs, the problem is thatrisiy and releasing the string data are not atomic
operations. Specifically, they must read the refeeecount, manipulate it and finally write it.
Unfortunately a thread may be interrupted durireshsteps.

For example, if we were to cdllandg on separate threads:

string s(“hello, world”);
run_threaded(f, s);
run_threaded(g, s);

we might observe the following sequence of events:

construct s
copy “hello, world”

call f
callg

f: read reference count (count == 1)

f: increment reference count (count == 2)
g: read reference count (count == 1)

f: write reference count (count == 2)

g: increment reference count (count == 2)
g: write reference count (count == 2)
oops

Becausg read the reference count befdrénad committed its change, we've lost the record 'sf
interest in the string. This is certainly goinglead to interesting behaviour at some point in the
program.

To protect ourselves from this eventuality, we néedensure that only one thread can read or
manipulate the reference count at any given time.

14

Fortunately there’'s a specific threading tool to this, the mutex (or mutual exclusion) lock.
Unfortunately it's not free. And since we needdol each uniqueness check we’ll need a lot of locks
So many that it's perfectly possible that our cteeekd up taking longer than making a copy of the
string, rendering the entire approach rather pesstl

I've heard of at least one string implementatioat thought to reduce the number of mutex locks by
having a single mutex favery string in the program. This does cut down on th&t of creating locks,
but has the unfortunate side effect that every sscoé every string is synchronised, rather defgatin
the point of multi-threaded string manipulation.

So is it worth it?

For my part, the chief justification for using COM/that | hate temporaries. Or, more accurately, |
hate the expense of copying them left, right amdree Winds me right up, it does.

Recall that with our naive string, storing the fesfia function call involvedwo unnecessary copies
of the data.

Hold on a sec.

Did | say twounnecessary copies?

Doesn't the C++ language specifically allow comgsleo avoid making unnecessary copies?

There | go with my little lies again. It's been tia while since compilers would create any
temporaries at all in this situation. C++ specificallows such temporaries to be side-steppedi€eli

in the terminology of the standard) and the resithe call tof to be constructed directly inga

There are two situations where a C++ compilergallg allowed to avoid copying an object.
Firstly when a function return expression is thenaaof a local object of the same type as the return
value, the object can be constructed directly theoreturn value rather than copied. For example:

string

f0

.
string s;
s = "hello, world";
return s;

In this case, rather than constructisgmanipulating it and copying it into the returnlu@a C++
compiler can, by treating as an alias for the return value, simply constthet return value and
manipulate it directly, saving a copy.

Secondly when a temporary that has not been bauadéference would be copied to an object of the
same type, the temporary can be constructed dirigttt the object. For example:

string t = f();

In this case, the temporary return valué afan be treated as an aliag goaving a copy.

Note that the two optimisations can be appliecheogame statement. In the above example, this means
that the string in the functionf can be treated as an alias for the sttingffectively eliminating two
copies.

So are there any situations where unnecessary<stilieexist?

Well, firstly there’s the case when strings arespasby value, but are not consequently changed. But
const references capture this behaviour perfestiyhis doesn’t seem to be particularly compelling.
Secondly there’s the case when a function has pheilpioints of return. For example:

15

string
f(bool b)

string s, t;
s = "hello, world";
t = "goodbye, world";

if(b) return s;
return t;

In such cases it can be difficult for the comptiemredict which of the return expressions showdd b
treated as an alias for the return value. In tage¢should the compiler piskort ?
Of course, a simple restructuring of the code wanéke things easier for our beleaguered compiler:

string
f(bool b)
{

string s;
if(b) s = "hello, world";
else s ="goodbye, world";

return s;

But there will inevitably be situations where suebtructuring is difficult, or at least unwieldy.
Finally there’s the case when a temporary is assiga a string. In this case COWay save us a copy.
For example:

string

f0
string s(“hello, world”);
return s;

string
?0
string s(“goodbye, world”);
return s;
void
hQ
{
string s = f();
...

s =9(); /ICOW may save us a copy here

The reason why COW won't always save a copy indhie is a little subtle.

As | mentioned before, the recommended way to implg assignment is with the copy and swap
idiom:

T&
T::operator=(const T &t)

T tmp(t);
swap(tmp);
return *this;

In this form, we will definitely pay for a copy dog assignment of a naingring . This is because
the compiler binds the temporary to a const ref@enather than to a newly constructed object so it
can't be elided. On the following line we copy ctost the temporary, but by then it's too late,cgin
the function can’t know if the reference is to mp®rary or a named variable.

16

Fortunately, we can rewrite the code to take adgebf copy elision:

T&
T::operator=(T t)

swap(t);
return *this;

Now the temporary is passed directly to the comstractor of the named argument, and is therefore a
candidate for the copy elision rule. The resultaofunction call can be constructed directly into
which is then swapped with the object.

So that's that for COW then, isn't it?

Well, COW can also save us a copy or two whenmmngit need to change a string, but aren’t certain.
For example, consider a function to strip a trailirewline from astring

string
f(string s)

if(!s.empty() && *s.rbegin()=="n")
return s.substr(0, s.size()-1);
else
return s;
}
}
void

90
{string s("Hello, world\n");
/slia::cout << f(s) << std::endl;
void
h0
/s/tring s("Hello, world");

std::cout << f(s) << std::endl;

In the functiong, string makes a copy since the origirglting has a trailing newline. I,
however, no change is required so no copy will aelen

We can get the same benefit, however, if we revihigecode so that a copy is only made if we need
one.

For example:

void
f(const string &s)

if(!s.empty() && *s.rbegin()=="n")
std::cout << s.substr(0, s.size()-1) << std::en dl;
else

std::cout << s << std::endl;

or:

17

void

90
{string s("Hello, world\n");
illfﬁi's.empty() && *s.rbegin()=="\n")
std::cout << s.substr(0, s.size()-1) << std::en dl;
else
std::cout << s << std::endl;
}

void

hQ

{string s("Hello, world");
illfﬁi's.empty() && *s.rbegin()=="\n")
{std::cout << s.substr(0, s.size()-1) << std::en dl;
else

std::cout << s << std::endl;

OK, I'll admit it, this isn't really a very compgly argument. We'd either need a different vergibn
the function for every operation we want to perfoom the resulting string or we'd have to let the
newline stripping logic leak out into the callingniction, neither of which are particularly attraeti
prospects.

Well, that and the fact that a more sophisticat€@\Cstring wouldn't make a copy if you were just
creating a sub-string. Adding offset and length rbera tostring would allow sub strings to share a
reference into the original string, delaying thepgantil we do somethingeally destructive like
change some characters.

Nevertheless, | contend that this aspect of COW dat confer that big an advantage.

Consider the following function:

void
f(const string &s)
if(!s.empty())

string::const_iterator first = s.begin();
string::const_iterator last = s.end();

--last;
while(first!=last) std::cout << *first++;
if(*first!="\n") std::cout << *first;

This still has the unfortunate property that wegah one function for each operation, but gains the
significant advantage of making no copies whatsoevarthermore, with a few minor changes, we
have something that looks suspiciously like a fiamcfrom <algorithm>

18

template<class Bidlt, class T, class UnOp>
void
f(Bidlt first, Bidlt last, T t, UnOp op = UnOp())

if(first!=last)
{
--last;

while(first!=last) op(*first++);
}if(*first!:t) op(*first);

This being a generic algorithm to perform an operatin our case printing, on every element in the
iterator range except the last if it is equal to

Personally, | tend to view the STL less as a lipridian as a way of life, or at least | did until my
girlfriend threatened to leave me if | didn't starashing once in a while. Now | guess | see it nawe

a way of programming.

If the STL doesn't have the algorithm or data stmecl want | implement it myself and add it to my
own extensions library. This can be a lot of wotkttee outset, but starts paying dividends fairly
quickly.

| doubt I'd consider this a candidate for my exiems library, but my point is that if yoreally care
about the efficiency of your string processingefywmuch doubt that you would rely on delayed copy
optimisation. A much better approach is to thinkyearefully about the algorithms you need to
perform and to implement them in an efficient manne

So, given my assertion that we can write our cadeuch a way that copy-on-write optimisation is
unnecessary and that it has synchronisation prablenboot, is this kind of approach really worth
further consideration?

Well, the growing opinion is no. Some string impkmations (notably STLport) are turning to
alternative optimisations such as the short stojptjmisation and expression templates.

The short string optimisation involves adding a krewaay member to the string class.

For example:

class string

{

public:
typedef char value_type;
typedef char * iterator;
typedef char const * const_iterator;
I...

string();
string(const char *s);
string(const string &s);

string & operator=(const string &s);
string & operator=(const char *s);

const_iterator begin() const;
const_iterator end() const;
iterator begin();

iterator end();

Il...

private:
char data_[16];
char *begin_;
char *end_;

When the string is less than 16 characters lon@gtreeydata_ can be used to store it in its entirety,
eliminating the need for a relatively expensiveoadtion when copying. Longer strings must be
allocated from the free store as usual. Begin_ andend_ pointers are used both to manage the
extent of the string and determine whether theatearray or the free store have been used te #tor
enabling the destructor to ensure that the mensocgpiirectly released when the string is destroyed.

19

Note that this optimisation does not reduce the memof characters that are copied when strings are
copied. Instead it relies upon the speed of allogaand copying memory on the stack rather than the
free store.

Expression templates are altogether more comptich¢asts and their precise mechanics are beyond
the scope of these notes. Put simply they work dferding string manipulation operations until the
result is actually assigned to something. For exanip the code snippet:

string s1 = "Hello";
string s2 = "world";
strings3 =sl1+","+s2;

the stringssl, ", ands2 are not actually concatenated usfl’s constructor requires the result.
At this point a triple concatenation is performeather than the two double concatenations that a
simple string implementation would perform. Thivas both the creation of a temporary sub string
and copying it into the final string.

In fact, expression templates are a very poweetithnique that can be used for far more sophisticate
optimisations than simply eliminating copies.

Despite this, I'm not yet willing to dismiss COVkéd optimisations out of hand, although you'll have
to be patient whilst | make a brief digression befexplaining why.

auto_string
Recall that it'sauto_ptr rather tharshared_ptr that is designed to manage ownership transfer.

So, why not consideauto_ptr rather tharshared_ptr semantics to eliminate the copy?
Let's look at a slightly different definition aftring

class string

public:
typedef char value_type;
typedef char * iterator;
typedef char const * const_iterator;
typedef size_t size_type;
I...

string();

string(const char *s);
string(const string &s);
string(const auto_string &s);

string & operator=(const string &s);
string & operator=(const auto_string &s);
string & operator=(const char *s);

auto_string release();

const_iterator begin() const;
const_iterator end() const;
iterator begin();

i/}erator end();

private:)
size_type size_;
scoped_array<char> data_;

Here, the data is stored irseoped_array (like scoped_ptr but usesielete[]]) rather than a
shared_array and we've picked up a few extra functions, allvdhich refer to a new type,
auto_string

Let's have a look at the definition afito_string

20

class auto_string
{
friend class string;

auto_string(string::size_type n,
const auto_array<char> &s) throw();

string::size_type size_;
auto_array<char> data_;

So, auto_string is simply a wrapper for aauto_array (which also useslelete[]]) that
hides its data from everything tstting

This gives us an explicit mechanism for statingt thhe wish to transfer ownership ofstring
through thaelease member function:

auto_string
string::release()
{

return auto_string(size_, data_.release());

The constructor and assignment operator can noawvedoaded to take advantage of the fact that we
are transferring ownership:

string::string(const auto_string &s) : size_(s.size)
data_(s.data D)

{

}

string &

string::operator=(const auto_string &s)

string tmp(s);
swap(tmp);
return *this;

}

Now, when we assign auto_string returned from a function tosaring

auto_string
f

string result(“hello, world”);
return result.release();

void
90
{

string s;
}s =1();

we have the following sequence of events:

21

call g
default construct s;

call f

construct “hello, world” into result

transfer s into temporary auto_string

tran?fer temporary auto_string into return value
exit

transfer auto_string into tmp
swap data with tmp
exitg

and at no point is the string data copied.

The advantage this has over gi@red_array version is that at every step of copy construction
assignment, the string data is owned by one angl @am object. In other words, we no longer have
aliasing of the data and consequently don’t hawdetd with the headaches that that causes.

Of course, since the compiler can optimise the apgy anyway, all we have succeeded in doing is to
create a slightly better version of a completelinfless optimisation.

Well, not quite.

Thank you for your patience, by the way.

vector

There is, in fact, another benefit to explicit fifee control but this is much better illustratediwa
class representing a mathematical vector.

To start, let's have a brief recapwalarray

Just kidding:

class vector

{

public:
typedef double value_type;
typedef double * iterator;
typedef double const * const_iterator;
typedef size_t size_type;
I...

vector();

vector(const vector &v);
vector(const auto_vector<T> &v);
explicit vector(size_t n);

vector & operator=(const vector &v);
vector & operator=(const auto_vector &v);

auto_vector release();

const_iterator begin() const;
const_iterator end() const;
iterator begin();

iterator end();

/...

private:
size_type size_;
scoped_array<double> data_;

The principal difference between this andtd::vector is that we want to support mathematical
vector operations.
Let's use vector addition as an example:

22

vector
operator+(const vector &I, const vector &r)

vector tmp(l);
tmp +=r;
return tmp;

Now this isn’t the most efficient implementatiomgating an uninitialised vector and filling it withe
result of the addition would have 3n read and wojierations whereas this has 4n. Still, it doeblena
us to reuse the in-place addition operator.

Note that we are assuming that both in-place axidéind out-of-place addition require 2n operations,
with out-of-place addition incurring a further ndopy the results. Strictly speaking this is n& tase
since the processor must make 3n reads and writasrfiain memory in both cases.

However, for many processors in-place addition widlke much better use of the processor cache and
as a result will generally be more efficient.

A few crude experiments with my compiler supporthis, showing that out-of-place addition did
indeed take approximately 1.5 times as long asldnep addition, so we shall maintain these
complexity assumptions as a convenient fiction.

We can effectively address the efficiency concetremd is bound to a function return value by
redefining the operator thus:

vector
operator+(vector |, const vector &r)

l+=r;
return |,

Now we are exploiting copy elision to reduce thenber of reads and writes to 2n, even better than if
we were to use an uninitialised vector to storeréseilt.

Unfortunately, we’ll still pay for the extra copyhenl is a variable. This is especially irritatingrifis

a function return value and hence a candidatentglace addition. Since referencelt@and value off

are afforded the same status during function oaeri@solution we can’t use overloading to address
this.

Unless we use a different type for our temporatiée auto_vector , for example:

auto_vector operator+(const vector &I, const vector &r);
auto_vector operator+(const auto_vector &I, const v ector &r);
auto_vector operator+(const vector &l, const auto_v ector &r);
auto_vector operator+(const auto_vector &I, const a uto_vector &r);

The implementation of each overload will look likar first version, except that we will prefer to
construct the temporary from anto_vector whenever possible, so that we can avoid copyirgy on
of the arguments:

auto_vector
operator+(const auto_vector &l, const vector &r)

vector tmp(l);
tmp +=r;
return tmp.release();

So the long awaited advantage of this approadhaisit allows us to indicate when we no longer care
what happens to an object, which we can exploih fot transfer initialisation and for transforming
out-of-place operations into in-place operations.

23

Note that by returninguto_vector s from the addition operators we can eliminatedt@struction
of a series of temporaries in a compound expression

auto_vector
f0)
{

vector x;

/...
return x.release();

auto_vector
g0
{

vector X;
/...
return x.release();

auto_vector
hQ
{

vector x;

/...
return x.release();

void
i0

vector sum = f()+g()+h();

With the original implementation of addition, thest of the summation would have been:

e 2 copies to temporary values at 2n read/writes each
* 2 in-place additions at 2n read/writes each

This gives us a grand total of 8n read/write openat

Recall that if we were willing to forgo reuse ok&tm-place addition operator, we could remove dne o
the read/write operations from creating each ofti¢heporary values, making the cost of summation:

e 2 additions at 2n read/writes each
e 2 copies to temporary values at n read/writes each

Reducing the total to 6n read/write operations.

With auto_vector , however, this becomes:

» 5 transfers to temporary values at O(1) read/weteh
* 2 in-place additions at 2n read/writes each

Giving us a final total of 4n + O(1) read/write oagons. Not too shabby.

There are two principal disadvantages to this aggro

Firstly we have to write overloaded versions ofrgvienction and secondly we have to write a lot of
boilerplate code.

Don’t we?

The crux of the first problem is that we only wamtoverload a function if there is an advantagago
to do so. In other words, we only want to overl@aactions which can exploit the reuse of temporary
objects. A lot of functions can’'t and we really dowant to make work for ourselves by having to
overload them.

For example:

24

double
abs(const vector &v)

{
double sum_square = 0.0;
vector::const_iterator first = v.begin();
vector::const_iterator last = v.end();
while(first!=last)
sum_square += *first * *first;
++first;

}

return sqrt(sum_square);

Thankfully, in such cases it's perfectly OK to passauto_vector instead of avector . This is
because the compiler is allowed to bind a constreeice to a temporary that is the result of a
conversion. And aector can be conversion constructed fromaamo_vector

The second problem is a little trickier to resolve.

auto_value

What we really need is a class that can managevahee transfer semantics for us. Much like
auto_ptr does for pointers.

The class definition is actually pretty straightiard:

template<typename X>
class auto_value

{
public:
typedef X element_type;

explicit auto_value(X &x) throw();
auto_value(const auto_value &x) throw();

auto_value & operator=(const auto_value &x) throw 0;
X & get() const throw();

private:
mutable X x_;

It's the implementation that’s the problem.

What we really need to find is a generic way tmsfar ownership of the controlled value to and from
theauto_value

Fortunately, for most of the types we are inteid#te one already exists swap.

Let's see how we can use it to implement the merfibeations ofauto_value

25

template<typename X>
auto_value<X>::auto_value(X &x)

x_.swap(x);
template<typename X>
auto_value<X>::auto_value(const auto_value &x)
{

x_.swap(x.get());
}
template<typename X>
auto_value<X> &
auto_value<X>::operator=(const auto_value &x)

{
x_.swap(x.get();
return *this;

The chief problem with usingwap rather than transferring the state directly ig tha have to default
construct a value before we can swap the transfammiie in. This pretty much limitsuto_value

to types with relatively inexpensive default coostors.

Note that we’ve supplied an explicit transfer comstior for the original value. This is more in keep
with theauto_ptr interface and removes the need to adelease method to the class.

There’s not much we can do about the conversiostoactor and assignment operator that need to be
implemented in the class itself.
Fortunately, these are pretty simple:

X::X(const auto_value<X> &x)

{
swap(x.get());

}

X &

X::operator=(const auto_value<X> &x)
swap(x.get());

return *this;

}

We could make it easier still if we were to abandaoin sensibilities and define these functions mlin
using a macro.
| can’t quite bring myself to write it though.

There’s only one thing left that's really lackingof the auto_value interface and that's
operator. . This would allow us to use theuto_value as a proxy for calls to the transferred
object’'s member functions in the same way tirator* andoperator-> do forauto_ptr

Shame it doesn't exist.

Fortunately, there’s another way to do this.

That other way is inheritance. If oauto_value were to inherit from rather than contain the vatue
controls, it would trivially be able to act as axyy.
Let's have a look at the changes we need to make:

template<typename X>
class auto_value : public X

public:
typedef X element_type;

explicit auto_value(X &x) throw();
auto_value(const auto_value &x) throw();

auto_value & operator=(const auto_value &x) throw 0;

26

The unfortunate side effect of this is that th#o_value and the value it controls are now the same
entity, and hence a comatito_value implies a const value. Now, you'll recall that @filon return
values can't be bound to non-const referencestatdwap is a non-const member function that has a
non-const reference argument.

That's right. We can’'t useswap to implement our transfer semantics anymore. Ni¢ss we cast
away the constness, that is:

template<typename X>
auto_value<X>::auto_value(X &x)

swap(x);
template<typename X>
auto_value<X>::auto_value(const auto_value &x)
swap(const_cast<auto_value &>(x));
template<typename X>
auto_value<X> &
auto_value<X>::operator=(const auto_value &x)

swap(const_cast<auto_value &>(x));
return *this;

Pretty slick, I'm sure you'll agree.

There’s just one tiny little problem with this coddardly even worth mentioning.

It's implementation-defined whether or not thishirivoke the dreaded undefined behaviour.

There’s a clause in the C++ standard stating tbatpders are allowed to bind const references to
function returns in one of two ways. They can «ithied to the value itself, or they can copy itoirst
const value and bind to that.

Seems innocuous enough, but there's another cldnasestates that trying to modify a const value
results in undefined behaviour. Which we all knawld mean anything from doing exactly what you
expect to washing away our coding sins with thamsing fire of a thermonuclear explosion.

I can’t think of any compiler vendors who'd go tbie latter option though.

Well, on reflection...

Actually, no, not even them.

transfer
Fortunately we can avoid invoking undefined behawiaf we are willing to force users of
auto_value to do a little additional work.

Specifically, we’ll need them to implement an owstep transfer mechanism thaill work for const
objects. Let’s call itransfer ~ and have a look at hovector might implement it:

27

class vector

{

public:
typedef double value_type;
typedef double * iterator;
typedef double const* const_iterator;
typedef size_t size_type;

typedef auto_value<vector> auto_vector;
/...

vector();

vector(const vector &v);
vector(const auto_vector<T> &v);
explicit vector(size_t n);

vector & operator=(const vector &v);
vector & operator=(const auto_vector &v);

const_iterator begin() const;
const_iterator end() const;
iterator begin();

iterator end();

Il...

protected:
void transfer(const auto_vector &v) const;

private:
mutable scoped_array<double> data_;

Firstly, we've added a typedef that definesto_ vector as anauto_value of vector
Secondly, we've added a protected member fundt@nsfer to manage the ownership transfer.
Finally, we've made thdata_ member mutable so that the comansfer function can affect it.

A protected member function? Yeah, yeah, | know.

If you're really bothered by it you can grant friship toauto_value<vector> and make it
private instead. The point is that thensfer member must be accessible by the derived
auto_value<vector> , but probably shouldn't be public since it will olate the perfectly
reasonable expectation that const objects wonhga

Some of you may also balk at the thought of forailignt classes to make their state mutable.

Well, | can give two reasons why you shouldn’t waiwo much about it.

Firstly, we have no choice. By making the stateahl& we are allowed to change it even if the object
is really const. This enables us to neatly side step theselin the standard that allows compilers to
copy a return value into a const object.

Secondly, it doesn’'t matter. Const methods aredirallowed to change the state of the object.

You may find the second point a little surprisisg,I'll elaborate.

Thevector class, like most container types, stores its stakememory buffer. If you took a look at
the definition ofscoped_array , you'd notice that the access member functionsafireonst, but
return non-const pointers or references. This mézatsthe elements of the array can be changed even
when accessed through a const method. Whilst thissaem a little counter intuitive, it's exactlywiho

a pointer data member would behave. They key pwmintote is that constness doesn’t propagate
through the pointer.

Namely:

X *const x;

and:

X const * const X;

28

donot mean the same thing. The former defines an imneitadinter to a mutable value and the latter
an immutable pointer to an immutable value, and the former that is implicitly applied to pointer
data members in a const member function.

The behaviour we've come to expect from our comtatlasses, that const member functions will not
change the value of any items in the containeznferced by the programmer rather than the compiler
When implementing container classes we must allaysareful not to change the state through const
member functions since the compiler is unlikelytarn us that we are doing so. Making the state
mutable therefore has little effect on the effoet must spend designing the class.

Now we're finished discussing the design choicetss take a look at the implementation:

void
vector::transfer(const auto_value<vector> &v) const

data_.swap(v.data_);

So transfer is actually just sswap for const objects, which shouldn’t be particulasiyrprising
since we've been usirgyvap for ownership transfer from the start.

We’'ll need to provide new implementations of theneersion constructor and assignment operator
used for ownership transfer:

vector::vector(const auto_value<vector> &v)
transfer(v);

vector &

vector::operator=(const auto_value<vector> &v)

transfer(v);
return *this;

Again, these shouldn’t be particularly suprisinge’Vé just replaced the calls swap with calls to
transfer

Finally, we need to rewrite thauto_value member functions to make use of ttransfer
function:

template<typename X>
auto_value<X>::auto_value(X &x)

{

transfer(x);
template<typename X>
auto_value<X>::auto_value(const auto_value &x)
{

transfer(x);
template<typename X>
auto_value<X> &
auto_value<X>::operator=(const auto_value &x)

transfer(x);

Yet again, we have simply replaced the callswap with calls totransfer

So, there we have it, a simple class implementigi@t ownership transfer that requires just a few
trivial member functions and a relaxed attitudedastness in its client classes.

If we are willing to accept this compromisauto_value provides the same functionality as a
custom made value transfer type with a lot lesskwor

Recalling theauto_vector addition operators:

29

typedef auto_value<vector> auto_vector;

auto_vector operator+(const vector &I, const vector

auto_vector operator+(const auto_vector &I, const v
auto_vector operator+(const vector &I, const auto_v
auto_vector operator+(const auto_vector &I, const a

&r);

ector &r);
ector &r);
uto_vector &r);

We can implement these operators in the same wdngfase, by constructing a temporargctor
from anauto_vector argument (where there is one) and performing tlditian in-place:

auto_vector
operator+(const auto_vector &l, const vector &r)

vector tmp(l);
tmp +=r;
return auto_vector(tmp);

In fact, since theauto_value copy constructor transfers ownership, we can &irgimplify these
operators by passing t@to_value arguments by value. For example:

auto_vector operator+(auto_vector I, const vector & n;

Now, instead of transferring thauto_vector into a temporarywector , we can exploit the fact
thatauto_vector inherits fromvector to perform in-place addition directly:

auto_vector
operator+(auto_vector |, const vector &r)

l+=r;
return I;

saving us a little bit of typing and a few callsitansfer

Once again, if we don't care about reusing tempesawe simply provide a single version of a
function:

double abs(const vector &v);

As before, this function will work for botlrectors andauto_vectors although now this is
becausauto_vector inherits fromvector and can therefore be bound directly to the refsgen

namespace mojo

In his article Generic<Programming>: Move Constouet(Dr Dobb’s Journal, 2003), Alexandrescu
describes the Mojo framework fautomatically detecting temporaries and using move semantics for
them.

By its very nature this technique must rely upomlioit, rather than explicit, conversion to transfe
types and hence requires a little extra work tausmthat temporaries are bound to the correctfgans
type.

The upshot of this is that three overloads, rathan two, must be provided for each function that
exploits move semantics. Nevertheless, this isabsiyuta more sophisticated solution to the problem.

T &&t

To close, it's worth mentioning that the value sfam semantics we've worked so hard to implement
are trivial using the above notation.

30

If you're wondering why on Earth | didn't just gtve@ad and use it instead of leading you down the
garden path, it's because it isn’t C++. Not yet.

The notation is for a new kind of reference propo®e the next version of C++, the rvalue reference
The rvalue reference differs from the familiar refece (hereafter known as an Ivalue reference) in
eight ways. Paraphrasing the proposal slightly:

=

A non-const rvalue can bind to a non-const rvagference.

Overload resolution rules prefer binding rvaluesrvalue references and Ivalues to lvalue
references.

Named rvalue references are treated as Ivalues.

Unnamed rvalue references are treated as rvalues.

The result of casting an Ivalue to an rvalue rafeeds treated as an rvalue.

Where elision of copy constructor is currently el for function return values, the local
object is implicitly cast to an rvalue reference.

Reference collapsing rules are extended to inaludkle references.

8. Template deduction rules allow detection of rvditadiie status of bound argument.

n

oA ®

~

For the purpose of eliminating copies, behaviouBsake of particular interest. Put simply, they mea
that a non-const temporary can be bound to a mdergype through which wean legally modify
them. Specifically, we now have four kinds of refece:

typedef T && Refl; //non-const reference to r value
typedef T const && Ref2; //const reference to rvalu e
typedef T & Ref3; //non-const reference to | value
typedef T const & Ref4; //const reference to Ivalu e

In the same way that a non-const object is prefaignbound to a non-const reference, an rvalue is
preferentially bound to an rvalue reference antialue is preferentially bound to an Ivalue referen
Given the following function signatures:

f(T &&t); /1
f(T const &&t); /12
f(T &t); 13
f(T const &t); /4

and the following references:

T &&t1;

T const && t2;
T&13;

T const & t4;

The rules mean that:

t1 binds to overloads 1, 2, 3 and 4 in that ordgsreference
t2 binds to overloads 2 and 4 in that order of peziee
t3 binds to overloads 3, 4, 1 and 2 in that ordgsreference
t4 binds to overloads 4 and 2 in that order of peziee

The original justification for disallowing the biimdy of rvalues to non-const references was thatg
generally a mistake to do so. Changing an objedtiwis about to go out of scope and be destroyed
will, after all, lose those changes.

This is especially nasty when the object in questi® a temporary resulting from an implicit
conversion:

31

void f(long &i);
void g()

char c=0;
f(c); /loops
/...

}

Since the character is promoted to a long with an implicit conversiénreceives a reference to the
temporary long that is the result of that conversi®he upshot of which is that, generally to the
surprise and consternation of the programmaerever changes.

Move semantics, however, have brought to lightwasion in which this is a valid thing to want to.d
The new rvalue references provide a mechanism bghake can express that we deliberately wish to
change the value of a temporary object whilst angidhe original problem.

Specifically, overloading on non-const rvalue refere and const Ivalue reference enables us to
distinguish between destructively reusing a tempoodject and non-destructively referring to a non-
temporary object.

Which is, of course, exactly what we've been stgvio achieve.
notes::~notes()

So has this all been a tremendous waste of time?
| hope not.

Firstly, | hope that this has given you cause tokila little more about how you can exploit ownépsh
control.

Secondly, | hope that you may fiadito_value , or something like it, a useful stop gap.

And finally, | hope that you've enjoyed it.

If not, | refer you to Harris’s Addendum:

Nyah, nyah. | can’t hear you.

#include

Krauss and Starkmablniversal Limits on Computation (arXiv:astro-ph/0404510 v2, 2004).
AlexandrescuGeneric< Programming>: Move Constructors (Dr Dobb’s Journal, 2003).
Hinnant, Abrahams and Dimo# Proposal to Add an Rvalue Reference to the C++ Language

(ISO/IEC JTC1/SC22/WG21 Document Number N1690, 2004

With thanks to Kevlin Henney for his review of teesotes and Astrid Osborn, Keith Garbutt and
Niclas Sandstrom for proof reading them.

32

