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auto_value: Transfer Semantics for Value Types 
 

Richard Harris 
 
The problem of eliminating unnecessary copies is one that many programmers have addressed at one 
time or another. These notes propose an alternative to one of the most common techniques, copy-on-
write. We'll begin with a discussion on smart pointers, and why we need more than one type of them. 
We'll then look at the relationship between smart pointers and the performance characteristics of some 
simple string implementations, including one that supports copy-on-write. I'll suggest that a different 
choice of smart pointer better captures our intent, and show that what we were trying to do doesn't 
achieve half as much as we thought it would.  
 
Finally, I hope to show that whilst the problem we set out to solve turns out to be a bit of a non-issue, 
this technique has a side effect that can be exploited to dramatically improve the performance of some 
complex operations. 
 
notes::notes() 
 
I’d like to begin by recalling Jackson’s Rules of Optimization. 
 

Rule 1: Don’t do it. 
Rule 2 (for experts only): Don’t do it yet. 

 
This is probably a little presumptuous of me, but I’d like to add something: 
 

Harris’s Addendum: Nyah, nyah. I can’t hear you. 
 
I’ll admit it’s not very mature, but I think it accurately reflects how we all really feel. No matter how 
much a programmer preaches, like Knuth, that premature optimisation is the root of all evil, I firmly 
believe that deep down they cannot help but recoil at inefficient code. 
Don’t believe me? Well, ask yourself which of the following function signatures you’d favour: 
 

 
void f(std::vector<std::string> strings); 
void f(const std::vector<std::string> &strings); 
 

 
Thought so. 
But you mustn’t feel bad about it, the desire to write optimal code is a good thing. And I can prove it. 
In their seminal 2004 paper, Universal Limits on Computation, Krauss and Starkman demonstrated that 
the universe will only be able to process another 1.35×10120 bits during its lifetime. Count them. Just 
1.35×10120. If Moore’s Law continues to hold true, we’ll run out of bits in 600 years. 
So we can stop feeling guilty about our oft-criticised drive to optimise, because wasted CPU cycles are 
accelerating the heat death of the universe. 
Will nobody think of the children? 
Act responsibly. 
Optimise. 
 
OK, that’s a little disingenuous. Knuth actually said that in 97% of cases we should forget about small 
efficiencies. I suspect that we’d all agree that using const references by default for value types 
generally falls into the 3% that we shouldn’t ignore. There is, after all, a world of difference between 
choosing the more efficient of two comparably complex statements and significantly increasing the 
complexity of your code in the name of a relatively small efficiency gain. 
There is a grey area though. Sometimes it really is worth increasing the complexity of your code for 
relatively small gains. Especially when the particular source of inefficiency occurs regularly within 
your code base and you can hide that complexity behind a nice tightly defined class interface. 
 
These notes are going to take a look at those most profligate of wastrels, temporaries. 
But since the direct route rarely has the most interesting views, we’re going to set off with a discussion 
on smart pointers. 



 2 

 
auto_ptr 
 
Let’s start by taking a look at the definition of auto_ptr 
 

 
template<typename X> 
class auto_ptr 
{ 
public: 
  typedef X element_type; 
 
  explicit auto_ptr(X *p = 0) throw(); 
  auto_ptr(auto_ptr &p) throw(); 
  template<class Y> auto_ptr(auto_ptr<Y> &p) throw( ); 
  auto_ptr(auto_ptr_ref<X> p) throw(); 
  ~auto_ptr() throw(); 
 
  auto_ptr & operator=(auto_ptr &p) throw(); 
  template<class Y> auto_ptr & operator=(auto_ptr<Y > &p) throw(); 
  auto_ptr & operator=(auto_ptr_ref<X> p) throw(); 
 
  template<class Y> operator auto_ptr_ref<Y>() thro w(); 
  template<class Y> operator auto_ptr<Y>() throw();  
 
  X & operator*() const throw(); 
  X * operator->() const throw(); 
  X * get() const throw(); 
 
  X * release() throw(); 
  void reset(X *p = 0) throw(); 
 
private: 
  X *x_; 

}; 
 

 
It’s a little bit more complicated than you’d expect isn’t it? 
This is because, like HAL, it has been driven ever so slightly barking mad from being given two 
competing responsibilities. The first of these is to tie the lifetime of an object to the scope in which it’s 
used. 
For example: 
 

 
void 
f() 
{ 
  const auto_ptr<T> t(new T); 
  //... 
} //object is destroyed here 

 

 
The destructor of the auto_ptr  deletes the object it references, ensuring that it is properly destroyed 
no matter how we leave the scope. 
The second responsibility is to safely transfer objects from one location to another. 
For example: 
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auto_ptr<T> 
f() 
{ 
  return auto_ptr<T>(new T); 
} 
 
void 
g(auto_ptr<T> t) 
{ 
  //... 
} //object is destroyed here 
 
void 
h() 
{ 
  auto_ptr<T> t; 
  t = f(); //ownership is transferred from f here  
  g(t);    //ownership is transferred to g here 
}  

 

 
The two roles are distinguished by the constness of the auto_ptr  interface. The const member 
functions of auto_ptr manage lifetime control, whereas the non-const member functions manage 
ownership transfer. 
For example, by making the variable t  in the function h in the previous example const, we can ensure 
that the compiler will tell us if we accidentally try to transfer its ownership elsewhere: 
 

 
void 
h() 
{ 
  c onst auto_ptr<T> t; 
  t = f(); //oops 
  g(t);    //oops 
}   

 

 
And herein lies the problem. We want const auto_ptrs  to jealously guard their contents, so we 
make the arguments to the transfer constructor and assignment operator non-const references. But, 
unnamed temporaries, such as function return values, can only be bound to const references, making it 
difficult to transfer ownership of an object out of one function and into another. 
For example: 
 

 
void 
h() 
{ 
  g(f()); //now I’m confused  
}  

 

 
This is where the mysterious auto_ptr_ref  class comes to our rescue. You’ll note that auto_ptr  
has a non-const conversion to auto_ptr_ref  and that there’s a conversion constructor that takes an 
auto_ptr_ref . So a non-const unnamed temporary can be converted to an auto_ptr_ref , 
which will in turn transfer ownership to an auto_ptr  via the conversion constructor. 
Neat, huh? 
 
Well, perhaps. But we could almost certainly do better by giving each of auto_ptr’s  personalities 
its own body. We’ll do this by introducing a new type, scoped_ptr , to manage object lifetimes and 
stripping those responsibilities from auto_ptr . 
The definition of scoped_ptr  is as follows: 
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template<typename X> 
class scoped_ptr 
{ 
public: 
  typedef X element_type; 
 
  explicit scoped_ptr(X *p = 0) throw(); 
  explicit scoped_ptr(const auto_ptr<X> &p) throw() ; 
  ~scoped_ptr() throw(); 
 
  X & operator*() const throw(); 
  X * operator->() const throw(); 
  X * get() const throw(); 
 
  auto_ptr<X> release() throw(); 
 
private: 
  scoped_ptr(const scoped_ptr &);             //not  implemented 
  scoped_ptr & operator=(const scoped_ptr &); //not  implemented 
 
  X * x_; 

}; 
 

 
Those in the know will see the similarity with the boost scoped_ptr  (www.boost.org).  This is only 
natural since I pretty much just swiped it from there. 
As with the original auto_ptr , the constructors take ownership of the objects passed to them and the 
destructor destroys them. The principal change is that it is no longer legal to copy or assign to 
scoped_ptrs  (the unimplemented private copy constructor and assignment operator are there to 
suppress the automatically generated ones). 
We can continue to use scoped_ptr  to tie object lifetime to scope: 
 

 
void 
f() 
{ 
  scoped_ptr<T> t(new T); 
  //... 
} //object is destroyed here 

 

 
But we can no longer use it to transfer ownership: 
 

 
scoped_ptr<T> //oops, no copy constructor  
f() 
{ 
  return scoped_ptr<T>(new T); 
} 
 
void 
g(scoped_ptr<T> t) //oops, no copy constructor  
{ 
  //... 
} 
 
void 
h() 
{ 
  scoped_ptr<T> t; 
  t = scoped_ptr<T>(new T); //oops, no assignment operator  
} 
 

 
Now let’s have a look at how giving up responsibility for lifetime control changes auto_ptr : 
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template<typename X> 
class auto_ptr 
{ 
public: 
  typedef X element_type; 
 
  explicit auto_ptr(X *p = 0) throw(); 
  auto_ptr(const auto_ptr &p) throw(); 
  template<class Y> auto_ptr(const auto_ptr<Y> &p) throw(); 
  ~auto_ptr() throw(); 
 
  const auto_ptr & operator=(const auto_ptr &p) con st throw(); 
  template<class Y> 
    const auto_ptr & operator=(const auto_ptr<Y> &p ) const throw(); 
 
  X & operator*() const throw(); 
  X * operator->() const throw(); 
 
  X * release() const throw(); 
 
private: 
  mutable X *x_; 

}; 
 

 
OK, so I lied a little. 
We haven’t so much lost the ability to control object lifetimes with auto_ptr  as made it a little less 
attractive. The constructors still take ownership of the objects passed to them and the destructor still 
destroys them, but holding on to them is difficult. 
This is because the object pointer is now mutable, allowing it to be changed even through const 
member functions. Usually mutable is reserved for members that can change whilst the object 
maintains the appearance of constness (caches, for example), an idea typically described as logical 
constness. Here, to be honest, it’s a bit of a hack. We need to tell the compiler to abandon all notions of 
constness for auto_ptrs  and unfortunately we can’t do that (unnamed temporaries rear their 
problematic heads again). So we lie to the compiler. We tell it that “no really, this function is const” 
and use mutability to change the object pointer anyway. 
 
We can still use auto_ptr  to transfer object ownership from one place to another: 
 

 
auto_ptr<T> 
f() 
{ 
  return auto_ptr<T>(new T); 
} 
 
void 
g(auto_ptr<T> t) 
{ 
  //... 
} //object is destroyed here  
 
void 
h() 
{ 
  auto_ptr<T> t; 
  t = f(); //ownership is transferred from f here  
  g(t);    //ownership is transferred to g here  
}  

 

 
But we might run into problems if we try to use it to control object lifetime: 
 

 
T 
h() 
{ 
  const auto_ptr<T> t; 
  g(t);      //ownership is transferred to g here  
  return *t; //oops  
}   
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It’s precisely because this new auto_ptr  is so slippery, that I’ve added a release method to boost’s 
scoped_ptr . This enables us to use the scoped_ptr  to control the lifetime of the object within a 
function and auto_ptr  to control its transfer during function return. 
For example: 
 

 
auto_ptr<T> 
f() 
{ 
  scoped_ptr<T> t; 
  //... 
  return t.release(); 
} 
 
void 
g() 
{ 
  scoped_ptr<T> t(f()); 
}  

 

 
Henceforth, when we refer to auto_ptr , we will mean this new version, having the sole 
responsibility of ownership transfer. 
 
shared_ptr 
 
Another approach to managing object lifetimes is to allow multiple references to share ownership of an 
object. This is achieved by keeping the object alive for as long as something is referring to it.  
There are two common techniques used to do this, the correct approach and the easy approach. Guess 
which one we’re going to look at. 
That’s right. Reference counting. 
 
Reference counting works by keeping a count of the number of active references to an object and 
deleting it once this count drops to zero. Each time a new reference is taken, the count is incremented 
and each time a reference is dropped, the count is decremented. This is generally achieved by requiring 
the referencing entity to explicitly register its interest or disinterest in the object. 
The chief advantage of using reference counting to implement shared ownership semantics is that it’s 
relatively simple compared to the alternative. 
The chief disadvantage occurs when an object directly or indirectly holds a reference to itself, such as 
when two objects hold references to each other. In this situation, the reference count will not fall to 
zero unless one of the objects explicitly drops the reference to the other. In practice, it can be 
extremely difficult to manually remove mutual references since the ownership relationships can be 
arbitrarily complex. If you would like to bring a little joy into someone’s life, ask a Java programmer 
about it. 
 
We can automate much of the book-keeping required for reference counting by creating a class to 
manage the process for us. In another shameless display of plagiarism I’m going to call this class 
shared_ptr : 
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template<typename X> 
class shared_ptr 
{ 
public: 
  typedef X element_type; 
 
  shared_ptr() throw(); 
  template<class Y> explicit shared_ptr(Y * p); 
  shared_ptr(const shared_ptr &p) throw(); 
  template<class Y> shared_ptr(const shared_ptr<Y> &p) throw(); 
  template<class Y> explicit shared_ptr(const auto_ ptr<Y> &p); 
  ~shared_ptr() throw(); 
 
  shared_ptr & operator=(const shared_ptr &p) throw ();  
  template<class Y> 
    shared_ptr & operator=(const shared_ptr<Y> &p) throw(); 
  template<class Y> 
    shared_ptr & operator=(const auto_ptr<Y> &p) th row(); 
 
  X & operator*() const throw(); 
  X * operator->() const throw(); 
  X * get() const throw(); 
 
  void reset(X *p = 0) throw(); 
  bool unique() const throw(); 
  long use_count() const throw(); 
 
private: 
  X *x_; 
  size_t *refs_; 

}; 
 

 
The reference count is pointed to by the member variable refs _ and is incremented whenever a 
shared_ptr  is copied (either through assignment or construction) and decremented whenever a 
shared_ptr  is redirected (either through assignment or reset) or destroyed. 
For example: 
 

 
void 
f() 
{ 
  shared_ptr<T> t(new T); //*refs_==1 
 
  { 
    shared_ptr<T> u(t); //*refs_==2 
    //... 
  } //*refs_==1 
 
  //... 
} //*refs_==0, object is destroyed here  
 

 
Reference counting blurs the distinction between object lifetime control and transfer by allowing many 
entities to simultaneously “own” an object. 
 

 
shared_ptr<T> 
f() 
{ 
  return shared_ptr<T>(new T); 
} 
 
void 
g(shared_ptr<T> t) //++*refs_ 
{ 
  //... 
} //--*refs_  
 
void 
h() 
{ 
  shared_ptr<T> t; 
  t = f(); //ownership is transferred from f here  
  g(t);    //ownership is shared with g here  
}  
 

 
The sequence of events in the above example runs as follows: 
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call h 
shared_ptr() 
 
call f 
new T 
shared_ptr(T *)                           //*refs_= 1 
shared_ptr(const shared_ptr &)            //++*refs _ 
~shared_ptr                               //--*refs _ 
exit f 
 
shared_ptr::operator=(const shared_ptr &) //++*refs _ 
~shared_ptr                               //--*refs _ 
 
call g 
shared_ptr(const shared_ptr &)            //++*refs _ 
~shared_ptr                               //--*refs _ 
exit g 
 
exit h 
~shared_ptr                               //--*refs _ 
 

 
As you can see, at the end of h, the reference count is zero and the object is consequently destroyed. 
Since the object has more than one owner we must exercise caution when using it or, more specifically, 
when changing its state. 
For example: 
 

 
void 
f(shared_ptr<T> t)  
{ 
  //... 
} 
 
void 
g() 
{ 
  shared_ptr<T> t(new T); 
  shared_ptr<const T> u(t); 
  f(t);    //ownership is shared with f here 
  //state of u is uncertain here  
}  
 

 
Of course, this is just pointer aliasing in a spiffy new suit and as such shouldn’t come as much of a 
surprise. I mean, nobody makes that mistake these days, do they? 
Well, almost nobody. 
Well, certainly not standard library vendors. 
Well, probably not standard library vendors. 
Well, probably not very often. 
 
string 
 
The last time I saw this problem was in a vendor supplied std::string . Well, not this problem 
exactly, but it was related to incorrect use of reference counted objects. I shan’t name names, but it was 
a company you all know and many of you respect. When I finally tracked down what was causing my 
program to crash I was stunned. 
Now you may be wondering how these sorts of problems could possibly relate to string , after all it’s 
a value type not an object type. The reason is that this particular string  used a common optimisation 
technique known as copy-on-write, or COW for short, and this technique relies upon reference 
counting. 
 
Before we describe how COW works, let’s take a look at a naïve implementation of a string class: 
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class string 
{ 
public: 
  typedef char         value_type; 
  typedef char *       iterator; 
  typedef char const * const_iterator; 
  typedef size_t       size_type; 
  //... 
 
  string(); 
  string(const char *s); 
  string(const string &s); 
 
  string & operator=(const string &s); 
  string & operator=(const char *s); 
 
  const_iterator begin() const; 
  const_iterator end() const; 
  iterator begin(); 
  iterator end(); 
  //... 
 
private: 
  size_type size_; 
  scoped_array<char> data_; 

}; 
 

 
A scoped_array  (identical to scoped_ptr , except that it uses delete[]  instead of delete ) 
ensures that the data is deleted when a string goes out of scope. 
 
The constructors are pretty straightforward: 
 

 
string::string() : size_(0), data_(0) 
{ 
} 
 
string::string(const char *s) : size_(strlen(s)), 
                                data_(size) 
{ 
  std::copy(s, s_size_, data_.get()); 
} 
 
string::string(const string &s) : size_(s.size_), 
                                  data_(new char[si ze_]) 
{ 
  std::copy(s.data_.get(), s.data_.get()+size_, dat a_.get()); 
} 

 

 
The copy and conversion constructors allocate new strings whose lifetimes are managed by the 
scoped_array  member data_ . The constructor bodies then simply copy the strings. 
Nothing particularly surprising. 
 
The assignment operators are a little more complex, though. These days the recommended way to 
implement assignment is with the copy and swap idiom. 
This is usually expressed as: 
 

 
T & 
T::operator=(const T &t) 
{ 
  T tmp(t); 
  swap(tmp); 
  return *this; 
} 
 

 
The chief advantage of this approach (besides its relative simplicity) is that it is guaranteed to leave the 
object in its original state if an exception is thrown during the copy operation. This is because we don’t 
commit the change until we swap the object with the temporary copy and the call to swap is 
guaranteed not to throw. 
In the case of string , the swap member function could be defined as: 
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void 
string::swap(string &s) 
{ 
  std::swap(size_, s.size_); 
  std::swap(data_, s.data_); 
} 
 

 
Unfortunately std::swap  will need to assign a new value to both data_  and s.data_  and since 
scoped_array  doesn’t allow us to rebind the pointer, it doesn’t provide an assignment operator or 
reset  member function. If we want scoped_array  to consider classes as scopes, we’ll need to 
provide some mechanism to enable assignment. 
Adding assignment operators to scoped_array  would dramatically weaken its guarantee that it will 
only ever point to one array. 
 
Thankfully, we can achieve what we want by adding a swap member function instead, defined as 
follows: 
 

 
void 
scoped_array::swap(scoped_array &a) 
{ 
  std::swap(x_, a.x_); 
} 
 

 
This still weakens scoped_array ’s guarantee, but in a way that’s less appealing to use for 
ownership transfer than an assignment operator or reset  member function. Well, that’s my story and 
I’m sticking to it. 
We can now redefine string ’s swap member: 
 

 
void 
string::swap(string &s) 
{ 
  std::swap(size_, s.size_); 
  data_.swap(s.data_); 
} 
 

 
Now, the naïve approach is perfectly good for short strings, but those string copies in the constructors, 
and indirectly in the assignment operator, start to look pretty ominous in the face of very long strings. 
For example, consider the sequence of events when storing the result of a function call: 
 

 
string 
f() 
{ 
  string s(“hello, world”); 
  return s;  
} 
 
void 
g() 
{ 
  string s = f(); 
} 
 

 
So what exactly happens when we call g? 
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call g 
 
call f 
copy “hello, world” into s 
copy s into return temporary 
exit f 
 
copy return temporary into s 
exit g 
 

 
Yikes. I count two completely unnecessary copies of the data. Now that’s not such a problem for 
“hello, world”, but will hit hard for the King James Bible, for example. 
 
So how does copy-on-write help? 
Well, it seeks to eliminate unnecessary copies by deferring them until they can no longer be avoided. 
This is typically when an element of the string is about to be changed, hence the name. Until that 
moment, a “copy” of a string simply holds a reference to the original. 
This is related to, but subtly different from, reference counting for shared ownership. Unlike shared 
ownership, COW allows multiple references to the underlying data of an object only so long as the 
external behaviour is unaffected. 
With shared ownership, we expect multiple references to be able to change the observed state of the 
object. With COW, this must be avoided at all costs. We use reference counting merely to avoid 
making multiple copies of provably identical data. 
For example: 
 

 
void 
f() 
{ 
  string s1(“hello, world”); 
  string s2(s1); //s2 can hold a reference to s1’s data here 
  std ::cout << s2 << std::endl; 
  s2.replace(0, 5, “goodbye”); //s2 must copy s1’s data here 
}  
 

 
Until we actually change the state of s2  in the last line of f , the behaviour of the function is 
unchanged whether s1  and s2  share their state or not. 
 
Let’s have a look at how we might implement a string class that supports COW: 
 

 
class string 
{ 
public: 
  typedef char         value_type; 
  typedef char *       iterator; 
  typedef char const * const_iterator; 
  typedef size_t       size_type; 
  //... 
 
  string(); 
  string(const char *s); 
  string(const string &s); 
 
  string & operator=(const string &s); 
  string & operator=(const char *s); 
 
  const_iterator begin() const; 
  const_iterator end() const; 
  iterator begin(); 
  iterator end(); 
  //... 
 
private: 
  size_type size_; 
  shared_array<char> data_; 

}; 
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The point to note about this definition is that the data is stored in a shared_array  (like 
shared_ptr , except that it uses delete[] ) rather than as a scoped_ptr . With this we will share, 
rather than copy, data for as long as possible. 
To see how this works, let’s take a closer look at a few member functions.  
First, the constructors: 
 

 
string::string() : size_(0), data_(0) 
{ 
} 
 
string::string(const char *s) : size_( strlen(s)), 
                                data_(new char[size _]) 
{ 
  std::copy(s, s+size_, data_.get()); 
} 
 
string::string(const string &s) : size_(s.size_), d ata_(s.data_) 
{ 
} 

 

 
The sharp-eyed amongst you will have noticed that the copy constructor is superfluous since the 
compiler generated version would have done exactly the same thing. 
The important point though is that when we construct a string  with a C-style point to character array, 
the data is copied, whereas when we copy construct a string , the data is shared. 
 
Now let’s have a look at the two flavours of begin  to see how we make sure that we don’t 
accidentally change a string’s  value through this shared data: 
 

 
string::const_iterator 
string::begin() const 
{ 
  return data_.get(); 
} 

 

 
Well, the first version is pretty simple. Since we’re returning a const_iterator  (defined as a 
pointer to const T), it’s not possible to change the contents of the string so we can simply return the 
pointer to the start of the character data. 
Granted, const_cast  could throw a spanner in the works, but I doubt anyone would be too upset if 
we simply declared casting between iterator types undefined behaviour and ignored the problem. 
Clearly, it’s the non-const version of the function that is of interest: 
 

 
string::iterator 
string::begin() 
{ 
  if(data_.get() && !data_.unique()) 
  { 
    char *s = data_.get(); 
    data_.reset(new char[size_]); 
    std::copy(s, s+size_, data_.get()); 
  } 
 
  return data_.get(); 
} 

 

 
And here we see the mechanism at work. If more than one string  is referring to the data, we copy it 
before we allow a means to change it to escape. The same check for uniqueness and subsequent copy 
must be present in every function that presents an opportunity to change the string. 
 
In the following example: 
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void 
f() 
{ 
  const string s1(“hello, world”); 
  string s2(s1);  
  string::iterator i = s2.begin(); 
  *i = ‘y’;  
}  
 

 
we have the following sequence of events: 
 

 
construct s1 
copy “hello, world” 
 
construct s2 
share “hello, world” 
 
s2.begin 
fail uniqueness check 
copy data 
return iterator 
 
assign ‘y’ to start of s2 
 

 
Given that we have already established the sharpness of your eyes, I have no doubt that you have raced 
ahead of me and spotted that this code isn’t remotely fit for purpose. 
 
To hammer home why, consider the following example: 
 

 
void 
f() 
{ 
  string s2(“hello, world”); 
  string::iterator i = s2.begin();  
  const string s1(s2); 
  *i = ‘y’; //oops, s1 has changed too 
}  
 

 
Let’s take a look at the sequence of events this time: 
 

 
construct s2 
copy “hello, world” 
 
s2.begin 
pass uniqueness check 
return iterator 
 
construct s1 
share “hello, world” 
 
assign ‘y’ to start of s1 and s2 
 

 
It seems there was a potential alias that we overlooked, the iterator itself. 
This is harder than I expected. Perhaps I should be more forgiving of my unnamed library vendor. 
Worse still, even if we correctly identify and protect all possible aliases, we still have made a rather 
sweeping assumption. Namely, that strings  will only be referred to by a single thread. 
 
In a multi-threaded program, it is quite possible that a COW string’s data could be manipulated by 
more than one thread at the same time. To illustrate the problems that this can lead to, consider what 
happens when two copies are made of a string. 
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void 
f(const string &s) 
{ 
  string s1(s); 
} 
 
void 
g(const string &s) 
{ 
  string g1(s); 
} 
 

 
In a single threaded program, f  and g must be called sequentially: 
 

 
    string s(“hello, world”); 
    f(s); 
    g(s); 
 

 
leading to the following sequence of events: 
 

 
    construct s 
    copy “hello, world” 
 
    call f 
    share “hello, world” 
    release “hello, world” 
    exit f 
 
    call g 
    share “hello, world” 
    release “hello, world” 
    exit g 
 

 
and everything goes smoothly. 
 
For multi-threaded programs, the problem is that sharing and releasing the string data are not atomic 
operations. Specifically, they must read the reference count, manipulate it and finally write it. 
Unfortunately a thread may be interrupted during these steps. 
For example, if we were to call f  and g on separate threads: 
 

 
    string s(“hello, world”); 
    run_threaded(f, s); 
    run_threaded(g, s); 
 

 
we might observe the following sequence of events: 
 

 
construct s 
copy “hello, world” 
 
call f 
call g 
 
f: read reference count      (count == 1) 
f: increment reference count (count == 2) 
g: read reference count      (count == 1) 
f: write reference count     (count == 2) 
g: increment reference count (count == 2) 
g: write reference count     (count == 2) 
oops 
 

 
Because g read the reference count before f  had committed its change, we’ve lost the record of f ’s 
interest in the string. This is certainly going to lead to interesting behaviour at some point in the 
program. 
To protect ourselves from this eventuality, we need to ensure that only one thread can read or 
manipulate the reference count at any given time. 
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Fortunately there’s a specific threading tool to do this, the mutex (or mutual exclusion) lock. 
Unfortunately it’s not free. And since we need to lock each uniqueness check we’ll need a lot of locks. 
So many that it’s perfectly possible that our checks end up taking longer than making a copy of the 
string, rendering the entire approach rather pointless. 
I’ve heard of at least one string implementation that sought to reduce the number of mutex locks by 
having a single mutex for every string in the program. This does cut down on the cost of creating locks, 
but has the unfortunate side effect that every access of every string is synchronised, rather defeating 
the point of multi-threaded string manipulation. 
 
So is it worth it? 
 
For my part, the chief justification for using COW is that I hate temporaries. Or, more accurately, I 
hate the expense of copying them left, right and centre. Winds me right up, it does. 
Recall that with our naïve string, storing the result of a function call involved two unnecessary copies 
of the data. 
 
Hold on a sec. 
 
Did I say two unnecessary copies? 
Doesn’t the C++ language specifically allow compilers to avoid making unnecessary copies? 
There I go with my little lies again. It’s been quite a while since compilers would create any 
temporaries at all in this situation. C++ specifically allows such temporaries to be side-stepped (elided, 
in the terminology of the standard) and the result of the call to f  to be constructed directly into s . 
 
There are two situations where a C++ compiler is legally allowed to avoid copying an object.  
Firstly when a function return expression is the name of a local object of the same type as the return 
value, the object can be constructed directly into the return value rather than copied. For example: 
 

 
string 
f() 
{ 
  string s; 
  s = "hello, world"; 
  return s; 
} 
 

 
In this case, rather than constructing s , manipulating it and copying it into the return value a C++ 
compiler can, by treating s  as an alias for the return value, simply construct the return value and 
manipulate it directly, saving a copy. 
Secondly when a temporary that has not been bound to a reference would be copied to an object of the 
same type, the temporary can be constructed directly into the object. For example: 
 

 
string t = f(); 
 

 
In this case, the temporary return value of f  can be treated as an alias of t , saving a copy.  
Note that the two optimisations can be applied to the same statement. In the above example, this means 
that the string s  in the function f  can be treated as an alias for the string t , effectively eliminating two 
copies. 
 
So are there any situations where unnecessary copies still exist? 
Well, firstly there’s the case when strings are passed by value, but are not consequently changed. But 
const references capture this behaviour perfectly, so this doesn’t seem to be particularly compelling. 
Secondly there’s the case when a function has multiple points of return. For example: 
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string 
f(bool b) 
{ 
  string s, t; 
  s = "hello, world"; 
  t = "goodbye, world"; 
 
  if(b) return s; 
  return t; 
} 
 

 
In such cases it can be difficult for the compiler to predict which of the return expressions should be 
treated as an alias for the return value. In this case, should the compiler pick s  or t ? 
Of course, a simple restructuring of the code would make things easier for our beleaguered compiler: 
 

 
string 
f(bool b) 
{ 
  string s; 
  if(b) s = "hello, world"; 
  else  s = "goodbye, world"; 
 
  return s; 
} 
 

 
But there will inevitably be situations where such restructuring is difficult, or at least unwieldy. 
Finally there’s the case when a temporary is assigned to a string. In this case COW may save us a copy. 
For example: 
 

 
string 
f() 
{ 
  string s(“hello, world”); 
  return s;  
} 
 
string 
g() 
{ 
  string s(“goodbye, world”); 
  return s;  
} 
 
void 
h() 
{ 
  string s = f(); 
  //... 
  s = g(); //COW may save us a copy here  
} 
 

 
The reason why COW won’t always save a copy in this case is a little subtle. 
 
As I mentioned before, the recommended way to implement assignment is with the copy and swap 
idiom: 
 

 
T & 
T::operator=(const T &t) 
{ 
  T tmp(t); 
  swap(tmp); 
  return *this; 
} 
 

 
In this form, we will definitely pay for a copy during assignment of a naïve string . This is because 
the compiler binds the temporary to a const reference, rather than to a newly constructed object so it 
can’t be elided. On the following line we copy construct the temporary, but by then it’s too late, since 
the function can’t know if the reference is to a temporary or a named variable. 
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Fortunately, we can rewrite the code to take advantage of copy elision: 
 

 
T & 
T::operator=(T t) 
{ 
  swap(t); 
  return *this; 
} 
 

 
Now the temporary is passed directly to the copy constructor of the named argument, and is therefore a 
candidate for the copy elision rule. The result of a function call can be constructed directly into t  
which is then swapped with the object. 
 
So that’s that for COW then, isn’t it? 
 
Well, COW can also save us a copy or two when we might need to change a string, but aren’t certain.  
For example, consider a function to strip a trailing newline from a string : 
 

 
string  
f(string s)  
{  
  if(!s.empty() && *s.rbegin()=='\n') 
  { 
    return s.substr(0, s.size()-1); 
  } 
  else 
  { 
    return s; 
  } 
}  
 
void  
g()  
{  
  string s("Hello, world\n");  
  //...  
  std::cout << f(s) << std::endl;  
} 
 
void  
h()  
{  
  string s("Hello, world");  
  //...  
  std::cout << f(s) << std::endl;  
} 
 

 
In the function g, string  makes a copy since the original string  has a trailing newline. In h, 
however, no change is required so no copy will be made. 
We can get the same benefit, however, if we rewrite the code so that a copy is only made if we need 
one.  
For example: 
 

 
void  
f(const string &s)  
{  
  if(!s.empty() && *s.rbegin()=='\n') 
  { 
    std::cout << s.substr(0, s.size()-1) << std::en dl; 
  } 
  else 
  { 
    std::cout << s << std::endl; 
  } 
} 
 

 
or: 
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void  
g()  
{  
  string s("Hello, world\n");  
  //...  
  if(!s.empty() && *s.rbegin()=='\n') 
  { 
    std::cout << s.substr(0, s.size()-1) << std::en dl; 
  } 
  else 
  { 
    std::cout << s << std::endl; 
  } 
} 
 
void  
h()  
{  
  string s("Hello, world");  
  //...  
  if(!s.empty() && *s.rbegin()=='\n') 
  { 
    std::cout << s.substr(0, s.size()-1) << std::en dl; 
  } 
  else 
  { 
    std::cout << s << std::endl;  
  } 
} 
 

 
OK, I'll admit it, this isn't really a very compelling argument. We'd either need a different version of 
the function for every operation we want to perform on the resulting string or we'd have to let the 
newline stripping logic leak out into the calling function, neither of which are particularly attractive 
prospects. 
Well, that and the fact that a more sophisticated COW string wouldn't make a copy if you were just 
creating a sub-string. Adding offset and length members to string  would allow sub strings to share a 
reference into the original string, delaying the copy until we do something really destructive like 
change some characters. 
Nevertheless, I contend that this aspect of COW does not confer that big an advantage.  
 
Consider the following function:  
 

 
void  
f(const string &s)  
{  
  if(!s.empty())  
  {  
    string::const_iterator first = s.begin();  
    string::const_iterator last  = s.end();  
 
    --last;  
    while(first!=last) std::cout << *first++;  
    if(*first!='\n')   std::cout << *first;  
  } 
} 
 

 
This still has the unfortunate property that we'd need one function for each operation, but gains the 
significant advantage of making no copies whatsoever. Furthermore, with a few minor changes, we 
have something that looks suspiciously like a function from <algorithm> : 
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template<class BidIt, class T, class UnOp>  
void  
f(BidIt first, BidIt last, T t, UnOp op = UnOp())  
{  
  if(first!=last)  
  {  
    --last;  
    while(first!=last) op(*first++);  
    if(*first!=t)      op(*first);  
  }  
} 
 

 
This being a generic algorithm to perform an operation, in our case printing, on every element in the 
iterator range except the last if it is equal to t . 
 
Personally, I tend to view the STL less as a library than as a way of life, or at least I did until my 
girlfriend threatened to leave me if I didn’t start washing once in a while. Now I guess I see it more as 
a way of programming. 
If the STL doesn't have the algorithm or data structure I want I implement it myself and add it to my 
own extensions library. This can be a lot of work at the outset, but starts paying dividends fairly 
quickly. 
I doubt I'd consider this a candidate for my extensions library, but my point is that if you really care 
about the efficiency of your string processing, I very much doubt that you would rely on delayed copy 
optimisation. A much better approach is to think very carefully about the algorithms you need to 
perform and to implement them in an efficient manner. 
 
So, given my assertion that we can write our code in such a way that copy-on-write optimisation is 
unnecessary and that it has synchronisation problems to boot, is this kind of approach really worth 
further consideration? 
 
Well, the growing opinion is no. Some string implementations (notably STLport) are turning to 
alternative optimisations such as the short string optimisation and expression templates. 
The short string optimisation involves adding a small array member to the string class. 
For example: 
 

 
class string 
{ 
public: 
  typedef char         value_type; 
  typedef char *       iterator; 
  typedef char const * const_iterator; 
  //... 
 
  string(); 
  string(const char *s); 
  string(const string &s); 
 
  string & operator=(const string &s); 
  string & operator=(const char *s); 
 
  const_iterator begin() const; 
  const_iterator end() const; 
  iterator begin(); 
  iterator end(); 
  //... 
 
private: 
  char data_[16]; 
  char *begin_; 
  char *end_; 

}; 
 

 
When the string is less than 16 characters long the array data_  can be used to store it in its entirety, 
eliminating the need for a relatively expensive allocation when copying. Longer strings must be 
allocated from the free store as usual. The begin_  and end_  pointers are used both to manage the 
extent of the string and determine whether the internal array or the free store have been used to store it, 
enabling the destructor to ensure that the memory is correctly released when the string is destroyed. 
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Note that this optimisation does not reduce the number of characters that are copied when strings are 
copied. Instead it relies upon the speed of allocating and copying memory on the stack rather than the 
free store. 
 
Expression templates are altogether more complicated beasts and their precise mechanics are beyond 
the scope of these notes. Put simply they work by deferring string manipulation operations until the 
result is actually assigned to something. For example, in the code snippet: 
 

 
string s1 = "Hello"; 
string s2 = "world"; 
string s3 = s1 + ", " + s2; 
 

 
the strings s1 , ", "  and s2  are not actually concatenated until s3 ’s constructor requires the result. 
At this point a triple concatenation is performed, rather than the two double concatenations that a 
simple string implementation would perform. This saves both the creation of a temporary sub string 
and copying it into the final string. 
In fact, expression templates are a very powerful technique that can be used for far more sophisticated 
optimisations than simply eliminating copies.  
 
Despite this, I’m not yet willing to dismiss COW like optimisations out of hand, although you’ll have 
to be patient whilst I make a brief digression before explaining why. 
 
auto_string 
 
Recall that it’s auto_ptr  rather than shared_ptr  that is designed to manage ownership transfer. 
So, why not consider auto_ptr  rather than shared_ptr  semantics to eliminate the copy? 
Let’s look at a slightly different definition of string : 
 

 
class string 
{ 
public: 
  typedef char         value_type; 
  typedef char *       iterator; 
  typedef char const * const_iterator; 
  typedef size_t       size_type; 
  //... 
 
  string(); 
  string(const char *s); 
  string(const string &s); 
  string(const auto_string &s); 
 
  string & operator=(const string &s); 
  string & operator=(const auto_string &s); 
  string & operator=(const char *s); 
 
  auto_string release(); 
 
  const_iterator begin() const; 
  const_iterator end() const; 
  iterator begin(); 
  iterator end(); 
  //... 
 
private: 
  size_type size_; 
  scoped_array<char> data_; 

}; 
 

 
Here, the data is stored in a scoped_array  (like scoped_ptr  but uses delete[] ) rather than a 
shared_array  and we’ve picked up a few extra functions, all of which refer to a new type, 
auto_string . 
Let’s have a look at the definition of auto_string : 
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class auto_string 
{ 
  friend class string; 
 
  auto_string(string::size_type n, 
              const auto_array<char> &s) throw(); 
 
  string::size_type size_; 
  auto_array<char> data_; 

}; 
 

 
So, auto_string  is simply a wrapper for an auto_array  (which also uses delete[] ) that 
hides its data from everything but string . 
 
This gives us an explicit mechanism for stating that we wish to transfer ownership of a string , 
through the release  member function: 
 

 
auto_string 
string::release() 
{ 
  return auto_string(size_, data_.release()); 
} 
 

 
The constructor and assignment operator can now be overloaded to take advantage of the fact that we 
are transferring ownership: 
 

 
string::string(const auto_string &s) : size_(s.size _),  
                                       data_(s.data _) 
{ 
} 
 
string & 
string::operator=(const auto_string &s) 
{ 
  string tmp(s); 
  swap(tmp); 
  return *this; 
} 
 

 
Now, when we assign an auto_string  returned from a function to a string : 
 

 
auto_string 
f() 
{ 
  string result(“hello, world”); 
  return result.release(); 
} 
 
void 
g() 
{ 
  string s; 
  s = f(); 
} 
 

 
we have the following sequence of events: 
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call g 
default construct s; 
 
call f 
construct “hello, world” into result 
transfer s into temporary auto_string 
transfer temporary auto_string into return value 
exit f 
 
transfer auto_string into tmp 
swap data with tmp 
exit g 
 

 
and at no point is the string data copied. 
The advantage this has over the shared_array  version is that at every step of copy construction or 
assignment, the string data is owned by one and only one object. In other words, we no longer have 
aliasing of the data and consequently don’t have to deal with the headaches that that causes. 
 
Of course, since the compiler can optimise the copy away anyway, all we have succeeded in doing is to 
create a slightly better version of a completely pointless optimisation. 
Well, not quite. 
Thank you for your patience, by the way. 
 
vector 
 
There is, in fact, another benefit to explicit lifetime control but this is much better illustrated with a 
class representing a mathematical vector. 
To start, let’s have a brief recap of valarray . 
Just kidding: 
 

 
class vector 
{ 
public: 
  typedef double         value_type; 
  typedef double *       iterator; 
  typedef double const * const_iterator; 
  typedef size_t         size_type; 
  //... 
 
  vector(); 
  vector(const vector &v); 
  vector(const auto_vector<T> &v); 
  explicit vector(size_t n); 
 
  vector & operator=(const vector &v); 
  vector & operator=(const auto_vector &v); 
 
  auto_vector release(); 
 
  const_iterator begin() const; 
  const_iterator end() const; 
  iterator begin(); 
  iterator end(); 
  //... 
 
private: 
  size_type size_; 
  scoped_array<double> data_; 

}; 
 

 
The principal difference between this and a std::vector  is that we want to support mathematical 
vector operations. 
Let’s use vector addition as an example: 
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vector 
operator+(const vector &l, const vector &r) 
{ 
  vector tmp(l); 
  tmp += r; 
  return tmp; 
} 

 

 
Now this isn’t the most efficient implementation, creating an uninitialised vector and filling it with the 
result of the addition would have 3n read and write operations whereas this has 4n. Still, it does enable 
us to reuse the in-place addition operator. 
 
Note that we are assuming that both in-place addition and out-of-place addition require 2n operations, 
with out-of-place addition incurring a further n to copy the results. Strictly speaking this is not the case 
since the processor must make 3n reads and writes from main memory in both cases. 
However, for many processors in-place addition will make much better use of the processor cache and 
as a result will generally be more efficient. 
A few crude experiments with my compiler supported this, showing that out-of-place addition did 
indeed take approximately 1.5 times as long as in-place addition, so we shall maintain these 
complexity assumptions as a convenient fiction. 
 
We can effectively address the efficiency concern when l  is bound to a function return value by 
redefining the operator thus: 
 
 

 
vector 
operator+(vector l, const vector &r) 
{ 
  l += r; 
  return l; 
} 

 

 
Now we are exploiting copy elision to reduce the number of reads and writes to 2n, even better than if 
we were to use an uninitialised vector to store the result. 
Unfortunately, we’ll still pay for the extra copy when l  is a variable. This is especially irritating if r  is 
a function return value and hence a candidate for in-place addition. Since reference to T and value of T 
are afforded the same status during function overload resolution we can’t use overloading to address 
this. 
Unless we use a different type for our temporaries. Like auto_vector , for example: 
 

 
auto_vector operator+(const vector &l, const vector  &r); 
auto_vector operator+(const auto_vector &l, const v ector &r); 
auto_vector operator+(const vector &l, const auto_v ector &r); 
auto_vector operator+(const auto_vector &l, const a uto_vector &r); 

 

 
The implementation of each overload will look like our first version, except that we will prefer to 
construct the temporary from an auto_vector  whenever possible, so that we can avoid copying one 
of the arguments: 
 

 
auto_vector 
operator+(const auto_vector &l, const vector &r) 
{ 
  vector tmp(l); 
  tmp += r; 
  return tmp.release(); 
} 
 

 
So the long awaited advantage of this approach is that it allows us to indicate when we no longer care 
what happens to an object, which we can exploit both for transfer initialisation and for transforming 
out-of-place operations into in-place operations. 
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Note that by returning auto_vector s from the addition operators we can eliminate the construction 
of a series of temporaries in a compound expression: 
 

 
auto_vector 
f() 
{ 
  vector x; 
  //... 
  return x.release(); 
} 
 
auto_vector 
g() 
{ 
  vector x; 
  //... 
  return x.release(); 
} 
 
auto_vector 
h() 
{ 
  vector x; 
  //... 
  return x.release(); 
} 
 
void 
i() 
{ 
  vector sum = f()+g()+h(); 
} 
 

 
With the original implementation of addition, the cost of the summation would have been: 
 

• 2 copies to temporary values at 2n read/writes each 
• 2 in-place additions at 2n read/writes each 

 
This gives us a grand total of 8n read/write operations. 
 
Recall that if we were willing to forgo reuse of the in-place addition operator, we could remove one of 
the read/write operations from creating each of the temporary values, making the cost of summation: 
 

• 2 additions at 2n read/writes each 
• 2 copies to temporary values at n read/writes each 

 
Reducing the total to 6n read/write operations. 
 
With auto_vector , however, this becomes: 
 

• 5 transfers to temporary values at O(1) read/writes each 
• 2 in-place additions at 2n read/writes each 

 
Giving us a final total of 4n + O(1) read/write operations. Not too shabby. 
 
There are two principal disadvantages to this approach. 
Firstly we have to write overloaded versions of every function and secondly we have to write a lot of 
boilerplate code. 
Don’t we? 
 
The crux of the first problem is that we only want to overload a function if there is an advantage to us 
to do so. In other words, we only want to overload functions which can exploit the reuse of temporary 
objects. A lot of functions can’t and we really don’t want to make work for ourselves by having to 
overload them. 
For example: 
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double 
abs(const vector &v) 
{ 
  double sum_square = 0.0; 
  vector::const_iterator first = v.begin(); 
  vector::const_iterator last  = v.end(); 
 
  while(first!=last) 
  { 
    sum_square += *first * *first; 
    ++first; 
  } 
 
  return sqrt(sum_square); 
} 
 

 
Thankfully, in such cases it’s perfectly OK to pass an auto_vector  instead of a vector . This is 
because the compiler is allowed to bind a const reference to a temporary that is the result of a 
conversion. And a vector  can be conversion constructed from an auto_vector . 
 
The second problem is a little trickier to resolve. 
 
auto_value  
 
What we really need is a class that can manage the value transfer semantics for us. Much like 
auto_ptr  does for pointers. 
 
The class definition is actually pretty straightforward: 
 

 
template<typename X> 
class auto_value 
{ 
public: 
  typedef X element_type; 
 
  explicit auto_value(X &x) throw(); 
  auto_value(const auto_value &x) throw(); 
 
  auto_value & operator=(const auto_value &x) throw (); 
 
  X & get() const throw(); 
 
private: 
  mutable X x_; 

}; 
 

 
It’s the implementation that’s the problem. 
What we really need to find is a generic way to transfer ownership of the controlled value to and from 
the auto_value . 
Fortunately, for most of the types we are interested in, one already exists in swap. 
Let’s see how we can use it to implement the member functions of auto_value : 
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template<typename X> 
auto_value<X>::auto_value(X &x) 
{ 
  x_.swap(x); 
} 
 
template<typename X> 
auto_value<X>::auto_value(const auto_value &x) 
{ 
  x_.swap(x.get()); 
} 
 
template<typename X> 
auto_value<X> & 
auto_value<X>::operator=(const auto_value &x) 
{ 
  x_.swap(x.get()); 
  return *this; 
} 

 

 
The chief problem with using swap rather than transferring the state directly is that we have to default 
construct a value before we can swap the transferred value in. This pretty much limits auto_value  
to types with relatively inexpensive default constructors. 
Note that we’ve supplied an explicit transfer constructor for the original value. This is more in keeping 
with the auto_ptr  interface and removes the need to add a release  method to the class. 
 
There’s not much we can do about the conversion constructor and assignment operator that need to be 
implemented in the class itself. 
Fortunately, these are pretty simple: 
 

 
X::X(const auto_value<X> &x) 
{ 
  swap(x.get()); 
} 
 
X & 
X::operator=(const auto_value<X> &x) 
{ 
  swap(x.get()); 
  return *this; 
} 
 

 
We could make it easier still if we were to abandon our sensibilities and define these functions inline 
using a macro. 
I can’t quite bring myself to write it though. 
 
There’s only one thing left that’s really lacking from the auto_value  interface and that’s 
operator. . This would allow us to use the auto_value  as a proxy for calls to the transferred 
object’s member functions in the same way that operator*  and operator->  do for auto_ptr . 
Shame it doesn’t exist. 
Fortunately, there’s another way to do this. 
 
That other way is inheritance. If our auto_value  were to inherit from rather than contain the value it 
controls, it would trivially be able to act as a proxy. 
Let’s have a look at the changes we need to make: 
 

 
template<typename X> 
class auto_value : public X 
{ 
public: 
  typedef X element_type; 
 
  explicit auto_value(X &x) throw(); 
  auto_value(const auto_value &x) throw(); 
 
  auto_value & operator=(const auto_value &x) throw (); 

}; 
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The unfortunate side effect of this is that the auto_value  and the value it controls are now the same 
entity, and hence a const auto_value  implies a const value. Now, you’ll recall that function return 
values can’t be bound to non-const references and that swap is a non-const member function that has a 
non-const reference argument. 
 
That’s right. We can’t use swap to implement our transfer semantics anymore. Not unless we cast 
away the constness, that is: 
 

 
template<typename X> 
auto_value<X>::auto_value(X &x) 
{ 
  swap(x); 
} 
 
template<typename X> 
auto_value<X>::auto_value(const auto_value &x) 
{ 
  swap(const_cast<auto_value &>(x)); 
} 
 
template<typename X> 
auto_value<X> & 
auto_value<X>::operator=(const auto_value &x) 
{ 
  swap(const_cast<auto_value &>(x)); 
  return *this; 
} 

 

 
Pretty slick, I’m sure you’ll agree. 
There’s just one tiny little problem with this code. Hardly even worth mentioning. 
It’s implementation-defined whether or not this will invoke the dreaded undefined behaviour. 
There’s a clause in the C++ standard stating that compilers are allowed to bind const references to 
function returns in one of two ways. They can either bind to the value itself, or they can copy it into a 
const value and bind to that. 
Seems innocuous enough, but there’s another clause that states that trying to modify a const value 
results in undefined behaviour. Which we all know could mean anything from doing exactly what you 
expect to washing away our coding sins with the cleansing fire of a thermonuclear explosion. 
I can’t think of any compiler vendors who’d go for the latter option though. 
Well, on reflection… 
Actually, no, not even them. 
 
transfer  
 
Fortunately we can avoid invoking undefined behaviour if we are willing to force users of 
auto_value  to do a little additional work. 
Specifically, we’ll need them to implement an ownership transfer mechanism that will work for const 
objects. Let’s call it transfer  and have a look at how vector  might implement it: 
 



 28 

 
class vector 
{ 
public: 
  typedef double             value_type; 
  typedef double *           iterator; 
  typedef double const *     const_iterator; 
  typedef size_t             size_type; 
  typedef auto_value<vector> auto_vector; 
  //... 
 
  vector(); 
  vector(const vector &v); 
  vector(const auto_vector<T> &v); 
  explicit vector(size_t n); 
 
  vector & operator=(const vector &v); 
  vector & operator=(const auto_vector &v); 
 
  const_iterator begin() const; 
  const_iterator end() const; 
  iterator begin(); 
  iterator end(); 
  //... 
 
protected: 
  void transfer(const auto_vector &v) const; 
 
private: 
  mutable  scoped_array<double> data_; 

}; 
 

 
Firstly, we’ve added a typedef that defines auto_vector  as an auto_value  of vector . 
Secondly, we’ve added a protected member function transfer  to manage the ownership transfer. 
Finally, we’ve made the data_  member mutable so that the const transfer  function can affect it. 
 
A protected member function? Yeah, yeah, I know. 
If you’re really bothered by it you can grant friendship to auto_value<vector>  and make it 
private instead. The point is that the transfer  member must be accessible by the derived 
auto_value<vector> , but probably shouldn’t be public since it will violate the perfectly 
reasonable expectation that const objects won’t change. 
 
Some of you may also balk at the thought of forcing client classes to make their state mutable. 
Well, I can give two reasons why you shouldn’t worry too much about it. 
Firstly, we have no choice. By making the state mutable we are allowed to change it even if the object 
is really const. This enables us to neatly side step the clause in the standard that allows compilers to 
copy a return value into a const object. 
Secondly, it doesn’t matter. Const methods are already allowed to change the state of the object. 
You may find the second point a little surprising, so I’ll elaborate. 
 
The vector  class, like most container types, stores its state in a memory buffer. If you took a look at 
the definition of scoped_array , you’d notice that the access member functions are all const, but 
return non-const pointers or references. This means that the elements of the array can be changed even 
when accessed through a const method. Whilst this may seem a little counter intuitive, it’s exactly how 
a pointer data member would behave. They key point to note is that constness doesn’t propagate 
through the pointer. 
Namely: 
 

 
X * const x; 
 

 
and: 
 

 
X const * const x; 
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do not mean the same thing. The former defines an immutable pointer to a mutable value and the latter 
an immutable pointer to an immutable value, and it is the former that is implicitly applied to pointer 
data members in a const member function. 
The behaviour we’ve come to expect from our container classes, that const member functions will not 
change the value of any items in the container, is enforced by the programmer rather than the compiler. 
When implementing container classes we must always be careful not to change the state through const 
member functions since the compiler is unlikely to warn us that we are doing so. Making the state 
mutable therefore has little effect on the effort we must spend designing the class. 
 
Now we’re finished discussing the design choices, let’s take a look at the implementation: 
 

 
void 
vector::transfer(const auto_value<vector> &v) const  
{ 
  data_.swap(v.data_); 
} 
 

 
So transfer  is actually just a swap for const objects, which shouldn’t be particularly surprising 
since we’ve been using swap for ownership transfer from the start. 
We’ll need to provide new implementations of the conversion constructor and assignment operator 
used for ownership transfer: 
 

 
vector::vector(const auto_value<vector> &v) 
{ 
  transfer(v); 
} 
 
vector & 
vector::operator=(const auto_value<vector> &v) 
{ 
  transfer(v); 
  return *this; 
} 
 

 
Again, these shouldn’t be particularly suprising. We’ve just replaced the calls to swap with calls to 
transfer . 
Finally, we need to rewrite the auto_value  member functions to make use of the transfer  
function: 
 

 
template<typename X> 
auto_value<X>::auto_value(X &x) 
{ 
  transfer(x); 
} 
 
template<typename X> 
auto_value<X>::auto_value(const auto_value &x) 
{ 
  transfer(x); 
} 
 
template<typename X> 
auto_value<X> & 
auto_value<X>::operator=(const auto_value &x) 
{ 
  transfer(x); 
} 

 

 
Yet again, we have simply replaced the calls to swap with calls to transfer . 
 
So, there we have it, a simple class implementing explicit ownership transfer that requires just a few 
trivial member functions and a relaxed attitude to constness in its client classes. 
If we are willing to accept this compromise, auto_value  provides the same functionality as a 
custom made value transfer type with a lot less work. 
Recalling the auto_vector  addition operators: 
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typedef auto_value<vector> auto_vector; 
 
auto_vector operator+(const vector &l, const vector  &r); 
auto_vector operator+(const auto_vector &l, const v ector &r); 
auto_vector operator+(const vector &l, const auto_v ector &r); 
auto_vector operator+(const auto_vector &l, const a uto_vector &r); 

 

 
We can implement these operators in the same way as before, by constructing a temporary vector  
from an auto_vector  argument (where there is one) and performing the addition in-place: 
 

 
auto_vector 
operator+(const auto_vector &l, const vector &r) 
{ 
  vector tmp(l); 
  tmp += r; 
  return auto_vector(tmp); 
} 
 

 
In fact, since the auto_value  copy constructor transfers ownership, we can further simplify these 
operators by passing the auto_value  arguments by value. For example: 
 

 
auto_vector operator+(auto_vector l, const vector & r); 
 

 
Now, instead of transferring the auto_vector  into a temporary vector , we can exploit the fact 
that auto_vector  inherits from vector  to perform in-place addition directly: 
 

 
auto_vector 
operator+(auto_vector l, const vector &r) 
{ 
  l += r; 
  return l; 
} 
 

 
saving us a little bit of typing and a few calls to transfer . 
 
Once again, if we don’t care about reusing temporaries we simply provide a single version of a 
function: 
 

 
double abs(const vector &v); 
 

 
As before, this function will work for both vectors  and auto_vectors  although now this is 
because auto_vector  inherits from vector  and can therefore be bound directly to the reference. 
 
namespace mojo  
 
In his article Generic<Programming>: Move Constructors (Dr Dobb’s Journal, 2003), Alexandrescu 
describes the Mojo framework for automatically detecting temporaries and using move semantics for 
them. 
By its very nature this technique must rely upon implicit, rather than explicit, conversion to transfer 
types and hence requires a little extra work to ensure that temporaries are bound to the correct transfer 
type. 
The upshot of this is that three overloads, rather than two, must be provided for each function that 
exploits move semantics. Nevertheless, this is arguably a more sophisticated solution to the problem. 
 
T &&t  
 
To close, it’s worth mentioning that the value transfer semantics we’ve worked so hard to implement 
are trivial using the above notation. 
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If you’re wondering why on Earth I didn’t just go ahead and use it instead of leading you down the 
garden path, it’s because it isn’t C++. Not yet. 
 
The notation is for a new kind of reference proposed for the next version of C++, the rvalue reference. 
The rvalue reference differs from the familiar reference (hereafter known as an lvalue reference) in 
eight ways. Paraphrasing the proposal slightly: 
 

1. A non-const rvalue can bind to a non-const rvalue reference. 
2. Overload resolution rules prefer binding rvalues to rvalue references and lvalues to lvalue 

references. 
3. Named rvalue references are treated as lvalues. 
4. Unnamed rvalue references are treated as rvalues. 
5. The result of casting an lvalue to an rvalue reference is treated as an rvalue. 
6. Where elision of copy constructor is currently allowed for function return values, the local 

object is implicitly cast to an rvalue reference. 
7. Reference collapsing rules are extended to include rvalue references. 
8. Template deduction rules allow detection of rvalue/lvalue status of bound argument. 

 
For the purpose of eliminating copies, behaviours 1-3 are of particular interest. Put simply, they mean 
that a non-const temporary can be bound to a reference type through which we can legally modify 
them. Specifically, we now have four kinds of reference: 
 

 
typedef T &&       Ref1; //non-const reference to r value 
typedef T const && Ref2; //const reference to rvalu e 
typedef T &        Ref3; //non-const reference to l value 
typedef T const &  Ref4; //const reference to lvalu e 
 

 
In the same way that a non-const object is preferentially bound to a non-const reference, an rvalue is 
preferentially bound to an rvalue reference and an lvalue is preferentially bound to an lvalue reference. 
Given the following function signatures: 
 

 
f(T &&t);       //1 
f(T const &&t); //2 
f(T &t);        //3 
f(T const &t);  //4 
 

 
and the following references: 
 

 
T &&t1; 
T const && t2; 
T & t3; 
T const & t4; 
 

 
The rules mean that: 
 

t1  binds to overloads 1, 2, 3 and 4 in that order of preference 
t2  binds to overloads 2 and 4 in that order of preference 
t3  binds to overloads 3, 4, 1 and 2 in that order of preference 
t4  binds to overloads 4 and 2 in that order of preference 

 
The original justification for disallowing the binding of rvalues to non-const references was that it was 
generally a mistake to do so. Changing an object which is about to go out of scope and be destroyed 
will, after all, lose those changes. 
This is especially nasty when the object in question is a temporary resulting from an implicit 
conversion: 
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void f(long &i); 
 
void g() 
{ 
  char c = 0; 
  f(c); //oops  
  //... 
} 
 

 
Since the character c  is promoted to a long with an implicit conversion, f  receives a reference to the 
temporary long that is the result of that conversion. The upshot of which is that, generally to the 
surprise and consternation of the programmer, c  never changes. 
 
Move semantics, however, have brought to light a situation in which this is a valid thing to want to do. 
The new rvalue references provide a mechanism by which we can express that we deliberately wish to 
change the value of a temporary object whilst avoiding the original problem. 
Specifically, overloading on non-const rvalue reference and const lvalue reference enables us to 
distinguish between destructively reusing a temporary object and non-destructively referring to a non-
temporary object. 
 
Which is, of course, exactly what we’ve been striving to achieve. 
 
notes::~notes() 
 
So has this all been a tremendous waste of time? 
I hope not. 
 
Firstly, I hope that this has given you cause to think a little more about how you can exploit ownership 
control. 
Secondly, I hope that you may find auto_value , or something like it, a useful stop gap. 
And finally, I hope that you’ve enjoyed it. 
 
If not, I refer you to Harris’s Addendum: 
 

Nyah, nyah. I can’t hear you. 
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