
1

1

The Appliance of Science:
Things in Computer Science

that
Every Practitioner Should Know

Andrei Alexandrescu

2

Please Note

�Built 100% using OpenOffice 2.0 on Linux

�OpenOffice makes you love PowerPoint

�Linux makes you love putting up with OpenOffice

2

3

Agenda

�Generic algorithm basics
�Big-O notation
�How to append in amortized constant time
�Lambda Functions
�Memory Barriers
�Exception Safety and Transactional Semantics

4

Please keep your seats! Come back from
the door!

That was the agenda in 1997

3

5

2007 Agenda

�Dynamic Programming

�Immutability vs. Aliasing vs. Type Changing
� GC is not all it's cracked to not be

�Machine Learning
� The Smoothness Principle

�Transactional Memory

6

Dynamic Programming

Rationale: Because we might still think
string::find is the ultimate solution

4

7

Dynamic Programming

� Hint: Has nothing to do with
� Dynamic memory allocation

� Writing code

� “Programming” = Creating a plan of action

� “Dynamic” = The plan is built from the problem
(dynamically), not once for all problems
(statically)

� “Data-dependent planning”

8

Dynamic Programming

� Solves optimization problems
� Can make an exponential into a polynomial (!)
� Principle of Optimality:

� An optimal solution to the problem embeds optimial
solutions to its subproblems

� Solutions to subproblems must overlap

� Example: longest common subsequence
� Yes: L(a1, a2, n) includes L(a1, a2, n – 1)

� Example: longest subarray of digits
� No: no overlapping => no saving work

5

9

Fibonacci

� An absolute classic:
unsigned Fib(unsigned n) {

return n <= 1 ? 1 : Fib(n - 1) + Fib(n - 2);

}

� Probably the 2nd best way to turn people away
from recursion

� The number of adds is a Fibonacci series itself
� Exponential!

10

Fibonacci

� Key pessimization: evaluating Fib(n) evaluates
the same overlapping subproblems many times

F(6) = 8

F(1)

F(1) F(0)

F(2)

F(3)

F(1) F(0)

F(2)

F(1)

F(1) F(0)

F(2)

F(3)

F(4)

F(1) F(0)

F(2)

F(1)

F(1) F(0)

F(2)

F(3)

F(4)F(5)

6

11

Fibonacci w/ memoization

� Memoize intermediate results
unsigned Fib(unsigned n) {

vector<unsigned> a(2, 1u);

for (auto i = 2u; i <= n; ++i)

a.push_back(a[i – 1] + a[i – 2]);

return a.back();

}

� Turns exponential into O(n)
� Or even O(1) if we save results between calls

� Memoization is a common DP technique

12

Levenshtein Distance

� Given two strings, figure the minimum number
of insertions, deletions, replacements that make
one into the other
� Save typing when fixing typos

� Spell checkers

� Protein classification

� Approximate searching in various databases

� It's an optimization problem
� Simple solution: delete all original string, replace with all

other string

� But pay £1 per character edited

7

13

Levenshtein distance

� Idea: LD(s, t) uses LD(s[0..$-1], t) and
LD(s, t[0..$-1])

� Fill a 2D cost matrix
d[s.size()+1][t.size()+1]
� d[a][b] is the cost for s.substr(0, a), t.substr(0, b)

� We know what d[0][k] is

� We know what d[k][0] is

� We grow d “around the diagonal”

14

Implementation

int LD(string s, string t) {

vector<vector<int> > d(s.size() + 1, vector<int>(t.size() + 1);

for (auto i = 0u; i <= s.size(); ++i) d[i][0] = i;

for (auto i = 0u; i <= t.size(); ++i) d[0][i] = i;

for (auto i = 0u; i < s.size(); ++i)

for (auto j = 0u; j < t.size(); ++j) {

d[i+1][j+1] := min(min(

d[i][j+1] + 1, // deletion

d[i+1][j] + 1), // insertion

d[i][j] + (s[i] != t[j])); // substitution

}

return d[m][n];

}

8

15

Immutability, Aliasing, Type
Changing

Rationale: Because garbage collection is not all it's
cracked up to not be

16

What's with all three?

� Principle: In a type system, given:
� data mutability

� aliasing

� retyping memory (= delete)

� You can't have all three and be safe.

� Corollary: Garbage collection makes it safe for
you to mutate aliased data!?!

9

17

Mutability

� In a system with mutability, you can rebind
symbols to values:

auto a = new Widget;

if (intractable_condition) a = b;

else a = 0;

� In a system with immutability (functional
languages), all symbols can't be rebound

� Key observation: in mutable systems the
compiler is unable to track the web of references

18

Aliasing

� Aliasing = the ability to have multiple symbols
referring to the same object

� Can't free when symbols go out of scope
� 100% fine in a value-semantics language

� Key observation: can't freely mutate data referred
by a symbol
� other symbols might refer to the same data

10

19

Memory retyping

� = The ability to pretend that some memory of a
type is “from now on” of another type

� A fancy name for free
� free is at some later point followed by new

� Ultimately new will reuse the memory

� Defining per-type heaps is onerous
� Also misses the point

� Key observation: you can't retype memory if you
have intractable aliases to it

20

Putting Them Together

� You must give up one:
� Aliases: because they refer the same memory from

various parts of the program

� Mutability: because it makes aliases intractable

� Memory renaming: because it can't deal with intractable
aliases!

� Corollary: Garbage collection deeply connected
to fundamental aspects of type safety
� Far cry from “...just allows incompetent programmers a

sense of entitlement”

11

21

More on GC

� Typical dialog:
� Gino: “Since our company started using GC, speed was

up 15%, productivity was up 30%, bugs were resolved
20% faster, code size was 10% smaller, and birth rate was
3% up”

� Dino: “Oh yeah? When our company tried GC, speed was
down 16%, productivity was down 31%, bugs were
resolved 21% slower, code size was 11% larger, and
sterility rate was... oh, never mind.”

� We should stop relying on anecdotes (alone)

22

Hertz & Berger's Tests

� Simulate running the same program on the same inputs:

� On a GC system; collect the trace

� On an “oracle” system that manages memory
perfectly

� N.B. This is not always possible

� Simulation on an architecturally-detailed simulator

� Allows e.g. simulating impact on locality

� No refcounting used

� Paper mentions 2x slowdown due to smart pointers

� Realistic programs: compress, ray tracing, database,
compiler, expert system...

12

23

Results

� 5x available memory: < 9% performance
improvements

� 3x available memory: < 17% performance
degradation

� 2x available memory: 70% performance
degradation (heavy swapping)

� 1x available memory: 90% performance
degradation

� Your RAM and your program's data size?
� Do the math

24

Machine Learning

Rationale: Because we must process more data
than ever before

13

25

Machine Learning

� Traditional programs:
� Reflect our intelligence, knowledge, and skill

� Good on little data and good prior understanding

� Machine learning programs:
� Know how to learn; build their own model of reality

� Good on much data and little prior understanding

� Examples:
� Simple medical diagnosis

� Natural language parsing

� Stock market prediction

26

Machine Learning

� The system learns a function f : X → Y
� Inputs X are “features” = “data that might help”

� Outputs Y are (usually) “labels”

� Not heuristics! We don't know the function!

� Example: “Is this image a human face?”
� Features: image pixels

� Labels: true or false

� Feature preprocessing an important step
� Infer face contour from pixels first

14

27

More Examples

� “Will this page layout lead to more sales?”
� Amazon, Yahoo, Google routinely experiment with data

� “What is the meaning of this word?”
� Disambiguation is an AI-complete task

� “Who said that?”
� Speaker recognition

� “Is this C++ code good or bad?”
� Code quality classification

28

The Smoothness Assumption

� If inputs vary just a little, outputs vary just a little

� Applies to most natural data

� Group together similar features
� Nearest-neighbors techniques

� Draw a separator to maximize margin
� Support vector machines

� Compute a smooth function
� Multi-layer perceptron (= neural net without the hype)

15

29

“What's in it for me?”

� You've got data
� You want to learn a function
� You don't know the function (complicated, hard

to compute, intractable)
� Machine learning techniques learn the function

for you

30

Transactional Memory

Rationale: Because in 15 years we might have a
1023-processor grid on our desks.

16

31

Transactional Memory

� We have more transistors than we can power on
� The “Power Wall”

� We have more computing power than we can
feed with data
� The “Memory Wall” and the “ILP Wall”

� Current technologies cannot evolve > 8 CPUs
� We need to deal with hundreds/thousands CPUs

� We're in desperate need for a solution
� Scrumm that.

32

Synchronization Models

� Lock-based synchronization

� “I see deadlocked threads”

� CAS-based programming

� Transactional Memory

� Full/Empty Bits in Memory

� None of the above is definitive

� Transactional Memory is today the most promising

17

33

Transactional Memory

� Transaction = finite sequence of memory reads
and writes executed by one thread

� Appear atomic to other processors

� Hardware: limited # of reads/writes

� Software: slow

� Virtual: fast in the common case

34

Example

void Widget::Allocate(unsigned n) {

atomic {

buffer_.resize(n);

refresh();

}

}

� Just replaced synchronized with atomic?!?
� No! There's no locking

� atomic blocks are composable

� atomic is system-wide, no data-dependent locking

18

35

However

� Undefined changes outside atomic blocks

� Unclear how to implement I/O transactionally

� What to do about O/S calls within a transaction?
� O/S API should change

� Resumption model unclear
� Should automatically resume a failed transaction?

� All of the above are of less concern in functional
languages

36

Transactional Memory redux

� To conclude:
� Efficient code becomes important again

� Concurrency knowledge comes to the forefront

� Functional-style programming will recrudesce

� Um, GC makes it easier too

19

37

Conclusions

� Dynamic Programming

� Immutability vs. Aliasing vs. Type Changing

� Machine Learning

� Transactional Memory

Famous last (coherent) words: Questions?

