
Bernhard Merkle
Central Research & Development

Software-Engineering
SICK-AG Waldkirch, Germany

mailto: Bernhard.Merkle@sick.de
mailto: Bernhard.Merkle@googlemail.com

ACCU 2007

Linting Software Architectures

2

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:2

Some Background, and the plan…Some Background, and the plan…
About…

myself
SICK

The plan for this talk
Software-Architectures

Terms, Definitions, etc
Checking Architectures

Different Kinds of Architecture-Analysis
Tools for Architecture-Analysis

Experiences, Discussion… ;-)

3

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:3

Linting Software-ArchitecturesLinting Software-Architectures
Why should we care ?

In lots of Projects, Architecture declay happens
We are not alone, as we‘ve prominent representatives… ;-)

4

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:4

Software-Architecture: DefinitionsSoftware-Architecture: Definitions
IEEE 1471-2000:

The fundamental organization of a system,embodied in its
components,
their relationship to each other and the environment,
and the principles governing its design and evolution.

Booch, Rumbaugh, Jacobson 1999
... the set of significant decisions about the organization of a
software system ...
… is the highest level of technical design for a software
system: It is driven by your key concerns

5

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:5

Views on a Software-ArchitectureViews on a Software-Architecture
4+1 View Model (Kruchten, 1995)

6

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:6

Documenting a Software-Architecture (Kruchten)Documenting a Software-Architecture (Kruchten)
captured in two documents:

Software Architecture Document
Software Design Guidelines

respected to maintain the architectural integrity of the system.

Documents are important, but they are Documents (enforce ? ;-)

Some kind of Automatic Rulechecking

7

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:7

MDSD (Model Driven Software Development)MDSD (Model Driven Software Development)
Aproach:

Architectural Design IS IN the model (and Application !?)
Executable Model (MDA, UML+CodeGen, UML-VM)
Source: Model, Target: Application (Forward Engineering)

Open Items:
Reverse-/Roundtrip-Engineering ?
UML too general: DSL ? (Meta-Modeling Support)
Important Standards (e.g. in MOF, ASL, QVT) ?
Manual Extensions of generated Code
Good Integration of “legacy Software” ?

8

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:8

Architecture-AnalysisArchitecture-Analysis
Lint == STATIC Analysis

hence…some limitations if you do things/tricks at runtime
(e.g. Reflection in Java,…)

With Tool support
Pro: automatic, consistent, rule enforcement
Cons: Semantic, external Quality

The Pro is much stronger compared with Code-Lints !!!

9

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:9

Levels of Static Analysis:Levels of Static Analysis:
Goal: (on all Levels)

find, avoid Problems, Increase QA (and measure it)
Micro-Level

Code, MIRSA-C
E.g: =, ==, {},

Marco-Level
Class-Design, Effective Rules, C++, Java, C#
E.g: by reference, String concat, Exception-Handling

Architecture-Level:
Layers, Graphs, Subsystems, Compoments, Interfaces
E.g: Coupling, Dependency, etc…

10

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:10

Different kinds of Architecture-AnalysisDifferent kinds of Architecture-Analysis
Consistency-Analysis
Rating of Architecture
Discover a Architecture
Measure real facts (e.g. metrics)
Monitoring changes, trends (QA)

11

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:11

Aim: No inconsistency

Dispersion (no toolchain, information loss)
Declay of Architecture, Rules vilotated,
(over project time, various reaons…)
Deviation Comparison

Consistency-AnalysisConsistency-Analysis

Requirements
Analysis

Architectural
Design

Design +
Implementation

12

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:12

Consistency-AnalysisConsistency-Analysis

Should-
Architecture

Requirements

Architecture-
Design

Comparison “Diff-”
Architecture

Actions

Extraction Is-
Architecture

Existing Code

•Violations
•Conformance•Dependencies as exist

•Interfaces / Usage as exist
•Subsystems

•Model Dependencies
•Model Interfaces
•Model Subsystems

•System SHOULD be: maintainable, easy to understand, extensible, independent

•System IS: …☺

13

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:13

Consistency-Analysis: Things become VISIBLEConsistency-Analysis: Things become VISIBLE

Results aggregated the right way: (e.g. Subsystem level)

14

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:14

How to cope with violations…How to cope with violations…

Identify violations
Where
Quantity, Quality
Heaviness, Impact

Handling violations
Fix possible ? (effort, costs, time)
Virtual refactorings, Simulations
List with modifications
Programmer implements fixes
Sometime, “autofix” lint ?…☺

15

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:15

Rating of ArchitectureRating of Architecture

NO Rating of external Requirements (Fullfillment)
Internal Quality (is the focus)

Cycles
Coupling
Stability
Anti-Patterns, Bad Smells

Target:
Analyze Problem (and fix) (during project)
Compare _different_ Architecture solutions ?

16

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:16

Rating of Architecture: e.g. CyclesRating of Architecture: e.g. Cycles

Handling of Subsystems becomes difficult…

17

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:17

Rating of Architecture: e.g. CouplingRating of Architecture: e.g. Coupling

DIP (Dependency Inversion Principle), R. Martin

Packg. E

Class X

Packg. F

Class Y

Packg. E

Class X

Packg. F

Class Y

before

after

Interface IX

18

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:18

Rating of Architecture: e.g. AntiPatternsRating of Architecture: e.g. AntiPatterns
Dependent BaseClass

Type: Design Problem

Problem: one of more Methods shall implement
different behavior, depending on the type, passed in
Context: make “extensible” systems, frameworks
Forces: Programming languages offer, instanceof/typeid funcs.
Antipattern: Methods of the baseclass, depend on derived classes, e.g.
accessing their members, doing switch/case depending on type
information

19

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:19

Rating of Architecture: e.g. How to find AntiPatternsRating of Architecture: e.g. How to find AntiPatterns
Dependent Baseclass: 1,5/1000 in Eclipse 2.1, 16/1000 in JDK 1.4.0
Multiple Interface Inheritance 4/1000 in Eclipse 2.1, 18/1000 in JDK 1.4.0

20

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:20

Rating of Architecture: e.g. How to find AntiPatternsRating of Architecture: e.g. How to find AntiPatterns
JDK 1.5:… 1315 classes in 229 packages all depend on each other !!!
classes.zip, rt.jar (BIG BALL OF MUD ? ;-)

21

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:21

Discover a Architecture (Erosion, prog. understand)Discover a Architecture (Erosion, prog. understand)
Visualisation of _existing_ Architecture (Layout !)

Architecture often implicit
Undocumented
new staff in project,
Quick Overview of external software

Erosion and Analysis
Discover central abstractions/key concepts, e.g. Worker-classes
Typical Usage of certain artefacts, Patterns

Navigation
Used from, Using others,…
Library dependency ?
High-Level Cross Referencer

22

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:22

Discover a Architecture: QuestionsDiscover a Architecture: Questions

Is there a Software Architecture ?
Implicit, explicit
Conformance with rules

Which Architecture Artefacts are there ?
Interfaces, Packages, Components, Subsystems, Layers
Layer-Architecture, Graph-Architecture,…

Any Violiations of the Reference/Target-Architecture ?
Cycles between xyz…
Interface violations between subsystems
Bypassing Interfaces

23

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:23

Discover a Architecture: Level of AbstractionDiscover a Architecture: Level of Abstraction

Topologic sorted layout, only Call-Relationships

•Business Modules
•Public, exported Methods

•Utility Modules, Infrastruc
•Private, internal Methods

Using… Used by…

24

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:24

Discover vs.Model a Architecture: Variance comparisonDiscover vs.Model a Architecture: Variance comparison

Arch. sorted layout, only Call-Relationships

•You SEE the architectural violoations

Using… Used by…

25

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:25

Discover a Architecture: Level of AbstractionDiscover a Architecture: Level of Abstraction

Topologic sorted layout, only Inheritance-Relationships

•You SEE important Base-Classes….

Sub-Classes… Base-Classes…

•E.g from Core:
IWorkspaceRunnable 102x
IAdaptable 100x
IPlatformObject 50x

26

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:26

Measure real facts (e.g. Metrics)Measure real facts (e.g. Metrics)

Metrics are _indicators_ for
Quality, Understandability, Maintenance, Error Probability,…
Hard facts, measured numbers

Examples
LOC (lines of code)
Cyclomatic complexity
ACD (average component dependency)
Metrics of Robert C. Martin (abstractness, instability etc.)
Inheritance depth, overridden/implemented methods,…

27

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:27

Measure real facts (e.g. Metrics)Measure real facts (e.g. Metrics)

Controlled Quantities
LOC, #of pakets, files, classes, methods
Simple counting of certain artefacts
Set a threshold
Identify and handle outliers

Discover candidates which are
Sources for bugs, complex, hard to maintain
Performance problems
Duplicates

28

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:28

Monitoring changes, trends (QA)Monitoring changes, trends (QA)
Level Subsystem, Package, File, Class, Operation etc.

New artefacts
New dependencies
New Architecture violations

Early, betimes correction of viloations

Monitoring
Trendreports
“outsouring” projects

29

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:29

Tools for Architecture-AnalysisTools for Architecture-Analysis
Features:

Static Analysis Actual state of Arch
Description of Arch Rules List of violations, deviations

Show Dependencies (granularity, number, graph)
Simulation of Refactoring, Worklist
Metrics
Trendanalysis

IDE-Integration
Web-Report
Automation, cmd-line

30

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:30

Tools for Architecture-AnalysisTools for Architecture-Analysis
Products:

Sotograph: www.software-tomography.de
Bauhaus: www.axivion.com

SonarJ: www.hello2morrow.de
Structure101: www.headwaysoftware.com
Lattix: www.lattix.com

Klocwork K7: www.klocwork.com

XRadar (opensource): www.xradar.org

Others: CodeCrawler, SeeSoft, ResourceStandardMetrics

31

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:31

Basic ApproachesBasic Approaches

Basic approaches
Your makesystem…
makedepend, jdepend
RE code into UML model
Eclipse (Java Build Path)

32

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:32

Sotograph: OverviewSotograph: Overview
VERY powerfull
Infos via Table + Graph
Cool layout algorithms
Known since 2003 (NG”SNIFF++”)
Mysql DB, open schema
Fat GUI Client, Web Report
About 200+ Metrics
Arbitrary User queries
Trend Analysis
Virtual Refactoring
Java, C++, C#, source parser
Lightweight SotoArch 2007

33

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:33

SotographSotograph

34

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:34

Sotograph: Source and ArchitectureSotograph: Source and Architecture

35

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:35

Sotograph: Structure and RelationshipsSotograph: Structure and Relationships

36

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:36

Sotograph: Structure and RelationshipsSotograph: Structure and Relationships

Depenencies: Informations…

37

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:37

Sotograph: Check Arch. Conformance and QualitySotograph: Check Arch. Conformance and Quality

Arch. violations

38

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:38

Sotograph: Monitoring ChangesSotograph: Monitoring Changes

of Architecture, Quality, Structure

39

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:39

Axivion Bauhaus Suite
Axivion Bauhaus Suite

User Interface
Access to the Analyses' Results (Interactive
GUI and Reporting)

Analysis
• Architecture

Visualization
• Architecture

Validation
• Interface Analysis
• Cycles, Dominance
• Metrics, Stylechecks
• Clone Detection
• …

Fact Base
(Graphbased)

Scripting Add-On

User Interface Skripting
Advanced Access, e.g. for
automated HTML-Reports

Coarse Grained Scripting
• additional individual analysis facilities
• metrics, stylechecks
• embedding into environment
• ...

Fine Grained Scripting
• individual stylechecks and metrics on the

syntactic level
• …

External Information Sources,
Application, Reports etc.

Resource Flow
Graph

Attributed
Abstract

Syntaxtree

Source Code
C, C++, Java, Ada, VB, Cobol

40

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:40

Dead Code

Axivion Bauhaus Suite

Cycles & Dominance

Interface Analysis

Clone Detection

Axivion
Bauhaus

Suite

Metric Analysis

Architectural Validation

41

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:41

SonarJ: OverviewSonarJ: Overview
Java centric
Infos via Tables
No graphs
Known since 2005
“In memory DB”
Good Eclipse-Pluging
Lightweight approach

42

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:42

SonarJ: Architecture-MetaModelSonarJ: Architecture-MetaModel

Architecture-MetaModel:

Your System

User Interface

Business Logic

Data Access

• Step 1: Cut horizontally into Layers

• Step 2: Cut vertically into vertical slices by functional aspects

C
on

tra
ct

s

C
us

to
m

er

U
se

r

C
om

m
on

• Step 3: Defines the rules of engagement

Natural subsystems

43

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:43

SonarJ: Architecture-MetaModelSonarJ: Architecture-MetaModel

Meta model: layers, vertical slices and subsystems
Each subsystem belongs to exactly one layer
A subsystem also might belong to a vertical slice
The association between vertical slices and subsystems is
typically implemented by a naming convention
Vertical slices do not have to be present on every layer
Technical subsystems typically are not associated with any
vertical slice
Technical systems often do not have vertical slices at all

44

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:44

SonarJSonarJ

45

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:45

Structure101: OverviewStructure101: Overview
Java (C++, Ada planned)
Infos via DSM + Graphs
Known since 2005
Repository/DB server
Fat-Client, Web
Lightweight approach

46

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:46

Structure101Structure101

Structure101 Architecture

47

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:47

Structure101: Architecture VisualizationStructure101: Architecture Visualization
Dependency Analyse

48

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:48

Lattix: OverviewLattix: Overview
Java, (C++ via BSC, doxygen)
Infos via DSM
No graphics (or weak)
Known since 2004
“In memory DB”
Lightweight approach
Fat client
Trend via cmd line
+ own report

49

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:49

Lattix: DSM PrincipleLattix: DSM Principle
Artefacts (e.g. Subsystems, Packages, Types, etc.) are displayed
in Matrix

Colums show “using-” relations
Rows show “is used from-” relations

Artefacts can be
Grouped in Subsystems, Layers
Arranged hierarchically

Architecture State can be read via Matrix

Partitioning algorithms can identifiy highly coupled artefacts
Rules for allowed/forbidden Relationsships

50

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:50

Lattix: DSM ExamplesLattix: DSM Examples

Example Architectures, for direct reading from Matrix

51

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:51

Lattix: Rules and PartitionierungLattix: Rules and Partitionierung

52

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:52

Klocwork: K7 OverviewKlocwork: K7 Overview
Static Analysis Tool with
Archtecture addon

Inforce, Inspect
Insight, Project Central

Infos via Table + Graph, but
WEAK layout algorithms !
NOT Out-of-the box, but can
be customized via tcl scripts
Mysql DB
Fat GUI Client, Web Report
Java, C++

53

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:53

Klocwork: K7 insightKlocwork: K7 insight

54

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:54

Klocwork: K7 insightKlocwork: K7 insight

55

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:55

Tool ComparisonTool Comparison
Target audience
Languages
Handling
Process
IDE Integration
Infrastructure
Lightweight, Powerfull, Compliacated
Features (that you (will) need)

56

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:56

Take homeTake home
Today's IDEs / mechanisms are not suited for architectural analysis

Use a “lint4Architecture” (no official, my term)
Tool support is a necessary

Architecture monitoring (possible with a small weekly time investment)

Management…can be convinced if existing problems become visible
pays off very fast (e.g. one week jdepend analysis vs. Sotograph refactoring done)

Rules can/will be violated
There is always a “good” reason for that

Rule can be checked
Tool support can automate the process
If you have continous build system, start emploing a “lint4Architecture” now !!!

57

Bernhard Merkle Linting Software-Architectures ACCU 2007 page:57

InformationsInformations
Wikipedia

http://en.wikipedia.org/wiki/Software_visualization
http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis

Books:
Refactoring in Large Software Projects

Patterns
AntiPatterns
Metrics
Architecture

