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Caveat

• This is expert level
– but I’m not an expert

• Everything is relative
– depends on hardware
– depends on usage pattern

• Don’t trust the example benchmark
– ”Churchill” benchmark
– doctored to fit
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Hardware

• Memory bus

• Getting hierarchical

• Going multi-socket
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Modern Hardware

• Modern CPU
architectures
blur the
distinction
between SMA
and ccNUMA

Picture: Intel, copied from c’t Magazin 21/14

• Concurrent access to same data from multiple core costs
(a lot)
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Counting Problem

• Counting events from different tasks
– often to detect ”hot spots”

• Inherently concurrent
– really?
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Example: Random Numbers

• Two related counters
– high frequency
– lower frequency

• Performance dominated by high frequency

• Very high contention
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”Stop the World”

• Proper locking is the only correct solution with exact
results
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”Stop the World” Results
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• Scales badly
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Giving Up Correctness

• Correct version too slow

• Decouple counters

• Possibly loose some counts
– benign races?
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Benign Races

• UB is UB!

• Only actual benign race is write only, same value

• For RMW, old nice CPUs, volatile and good look may
help
– for demo only, never for production!
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Volatile Results
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count: 30870350 , matches: 13779698 , ratio: 2.24028

• With high contention, non-synchronized counters loose
• Definitely not worth the risk

Atomic Counters at ACCU, Bristol, April 2015 Copyright c©2015, Detlef Vollmann 12



Atomic Count

• Correctly synchronize (separately)

• Default atomics
– sequentially consistent

• Relaxed atomics
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Atomic Results

• No measurable
difference
– RMW requires ownership

transfer

• Still no real scalability
– Starvation
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(Weak) Compare-And-Swap

• Atomic increment (fetch-add) is RMW

• CAS may be read-only (fail case)
– no ownership transfer required

• CAS with backoff may reduce cache-line traffic
– Dice,Lev,Moir ”Scalable Statstics Counters”
– NUMA node based
– anti-starvation mechanism
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Distributed Counters

• Giving up more precision
• Count locally
• Read globally

– reducer, accumulator

• Proposal N3706 by Lawrence Crowl

template <typename Integral >

class bumper;

{

public:

void operator +=( Integral by);

void operator -=(Integral by);

void operator ++();

void operator --();

};
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Simplex

template <typename Integral > class simplex

: public bumper <Integral >

{

public:

constexpr simplex ();

constexpr simplex(Integral in);

simplex(const simplex &);

simplex& operator =( const simplex &);

Integral load ();

Integral exchange(Integral to);

};

• Not distributed
• Provides interface for other counters as reducer
• Performance like atomics
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Buffer
template <typename Integral > class buffer

: public bumper <Integral >

{

typedef bumper <Integral > prime_type;

public:

buffer ();

buffer(prime_type& p);

buffer(const buffer &);

buffer& operator =(const buffer &);

void push ();

};

• Per-task counter
• Provides push (into simplex counter)
• Must push for count being seen

Atomic Counters at ACCU, Bristol, April 2015 Copyright c©2015, Detlef Vollmann 18



Buffer Results

100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

1 2 4 8 16

buffer

• This looks good
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Broker

template <typename Integral > class weak_broker

: public bumper <Integral >

{

typedef weak_duplex <Integral > duplex_type;

public:

weak_broker ();

weak_broker(duplex_type& p);

weak_broker(const weak_broker &);

weak_broker& operator =(const weak_broker &);

};

• provides (internal) query interface
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Duplex

template <typename Integral > class weak_duplex

: public bumper <Integral >

{

public:

weak_duplex ();

weak_duplex(Integral in);

weak_duplex(const weak_duplex &);

weak_duplex& operator =(const weak_duplex &);

Integral load ();

};

• duplex provides the reduction
• provides exact count at time of reading

– but no ”stop the world”
– no synchronization for related counters
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Broker Results
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• This also looks good
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Push vs. Pull

• push only competes with other pushes

• pull competes with actual counts
– but read only

• pull gives better precision

• performance depends on actual usage
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Results From a NUMA Machine

• Dual-core Opterons, dual-socket
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Single Socket Machine Results

• Quad-core Haswell, plus hyperthreading
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Morris’ Counter

• Morris’ algorithm provides a counter up to 130000 with
8 bit
– looses precision

• Dice,Lev,Moir scale that to higher numbers

• Less bit changes mean less updates

• Scales pretty well
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Overflow

• Long running counters will overflow

• N3706 provides exchange to drain buffers

• strong_duplex does this on pull
– now a read/write operation
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Distribution

• The answer to shared state

• Using local counters costs space

• Synchronization for reduction requires thought

• Avoid starvation on reduction

• Avoid false sharing for local counters
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Conclusion

• Performant parallel counters are not atomic

• But if you don’t want to stop the world, that’s the
simple truth

• Modifying shared memory is expensive

• Creative solutions may help

• General solution is distribution
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