
Atomic Counters
A Lesson on Performance and Hardware Concurrency

Detlef Vollmann

vollmann engineering gmbh, Luzern, Switzerland

ACCU Conference, Bristol, April 2015

Caveat

• This is expert level
– but I’m not an expert

• Everything is relative
– depends on hardware
– depends on usage pattern

• Don’t trust the example benchmark
– ”Churchill” benchmark
– doctored to fit

Atomic Counters at ACCU, Bristol, April 2015 Copyright c©2015, Detlef Vollmann 2

Overview

Introduction

Stop the World

Uncertainity

Atomic Solutions

Distributed Solutions

Back to the Future

Wrap-Up

Atomic Counters at ACCU, Bristol, April 2015 Copyright c©2015, Detlef Vollmann 3

Hardware

• Memory bus

• Getting hierarchical

• Going multi-socket

MemoryCPU

Memory

L
2
C
a
c
h
e

CPU

C
a
c
h
e
C
a
c
h
e

L
3
C
a
c
h
e

MemoryCPU

C
a
c
h
e

MemoryCPU
C
a
c
h
e

Atomic Counters at ACCU, Bristol, April 2015 Copyright c©2015, Detlef Vollmann 4

Modern Hardware

• Modern CPU
architectures
blur the
distinction
between SMA
and ccNUMA

Picture: Intel, copied from c’t Magazin 21/14

• Concurrent access to same data from multiple core costs
(a lot)

Atomic Counters at ACCU, Bristol, April 2015 Copyright c©2015, Detlef Vollmann 5

Counting Problem

• Counting events from different tasks
– often to detect ”hot spots”

• Inherently concurrent
– really?

Atomic Counters at ACCU, Bristol, April 2015 Copyright c©2015, Detlef Vollmann 6

Example: Random Numbers

• Two related counters
– high frequency
– lower frequency

• Performance dominated by high frequency

• Very high contention

Atomic Counters at ACCU, Bristol, April 2015 Copyright c©2015, Detlef Vollmann 7

”Stop the World”

• Proper locking is the only correct solution with exact
results

Atomic Counters at ACCU, Bristol, April 2015 Copyright c©2015, Detlef Vollmann 8

”Stop the World” Results

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 2 4 8 16

mutex

• Scales badly
Atomic Counters at ACCU, Bristol, April 2015 Copyright c©2015, Detlef Vollmann 9

Giving Up Correctness

• Correct version too slow

• Decouple counters

• Possibly loose some counts
– benign races?

Atomic Counters at ACCU, Bristol, April 2015 Copyright c©2015, Detlef Vollmann 10

Benign Races

• UB is UB!

• Only actual benign race is write only, same value

• For RMW, old nice CPUs, volatile and good look may
help
– for demo only, never for production!

Atomic Counters at ACCU, Bristol, April 2015 Copyright c©2015, Detlef Vollmann 11

Volatile Results

0

20000

40000

60000

80000

100000

120000

1 2 4 8 16

volatile

volatile2

count: 30870350 , matches: 13779698 , ratio: 2.24028

• With high contention, non-synchronized counters loose
• Definitely not worth the risk

Atomic Counters at ACCU, Bristol, April 2015 Copyright c©2015, Detlef Vollmann 12

Atomic Count

• Correctly synchronize (separately)

• Default atomics
– sequentially consistent

• Relaxed atomics

Atomic Counters at ACCU, Bristol, April 2015 Copyright c©2015, Detlef Vollmann 13

Atomic Results

• No measurable
difference
– RMW requires ownership

transfer

• Still no real scalability
– Starvation

30000

40000

50000

60000

70000

80000

90000

1 2 4 8 16

atomics-cst

atomics-relaxed

Atomic Counters at ACCU, Bristol, April 2015 Copyright c©2015, Detlef Vollmann 14

(Weak) Compare-And-Swap

• Atomic increment (fetch-add) is RMW

• CAS may be read-only (fail case)
– no ownership transfer required

• CAS with backoff may reduce cache-line traffic
– Dice,Lev,Moir ”Scalable Statstics Counters”
– NUMA node based
– anti-starvation mechanism

Atomic Counters at ACCU, Bristol, April 2015 Copyright c©2015, Detlef Vollmann 15

Distributed Counters

• Giving up more precision
• Count locally
• Read globally

– reducer, accumulator

• Proposal N3706 by Lawrence Crowl

template <typename Integral >

class bumper;

{

public:

void operator +=(Integral by);

void operator -=(Integral by);

void operator ++();

void operator --();

};

Atomic Counters at ACCU, Bristol, April 2015 Copyright c©2015, Detlef Vollmann 16

Simplex

template <typename Integral > class simplex

: public bumper <Integral >

{

public:

constexpr simplex ();

constexpr simplex(Integral in);

simplex(const simplex &);

simplex& operator =(const simplex &);

Integral load ();

Integral exchange(Integral to);

};

• Not distributed
• Provides interface for other counters as reducer
• Performance like atomics

Atomic Counters at ACCU, Bristol, April 2015 Copyright c©2015, Detlef Vollmann 17

Buffer
template <typename Integral > class buffer

: public bumper <Integral >

{

typedef bumper <Integral > prime_type;

public:

buffer ();

buffer(prime_type& p);

buffer(const buffer &);

buffer& operator =(const buffer &);

void push ();

};

• Per-task counter
• Provides push (into simplex counter)
• Must push for count being seen

Atomic Counters at ACCU, Bristol, April 2015 Copyright c©2015, Detlef Vollmann 18

Buffer Results

100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

1 2 4 8 16

buffer

• This looks good

Atomic Counters at ACCU, Bristol, April 2015 Copyright c©2015, Detlef Vollmann 19

Broker

template <typename Integral > class weak_broker

: public bumper <Integral >

{

typedef weak_duplex <Integral > duplex_type;

public:

weak_broker ();

weak_broker(duplex_type& p);

weak_broker(const weak_broker &);

weak_broker& operator =(const weak_broker &);

};

• provides (internal) query interface

Atomic Counters at ACCU, Bristol, April 2015 Copyright c©2015, Detlef Vollmann 20

Duplex

template <typename Integral > class weak_duplex

: public bumper <Integral >

{

public:

weak_duplex ();

weak_duplex(Integral in);

weak_duplex(const weak_duplex &);

weak_duplex& operator =(const weak_duplex &);

Integral load ();

};

• duplex provides the reduction
• provides exact count at time of reading

– but no ”stop the world”
– no synchronization for related counters

Atomic Counters at ACCU, Bristol, April 2015 Copyright c©2015, Detlef Vollmann 21

Broker Results

100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

1 2 4 8 16

duplex

• This also looks good

Atomic Counters at ACCU, Bristol, April 2015 Copyright c©2015, Detlef Vollmann 22

Push vs. Pull

• push only competes with other pushes

• pull competes with actual counts
– but read only

• pull gives better precision

• performance depends on actual usage

100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

1 2 4 8 16

buffer

duplex

Atomic Counters at ACCU, Bristol, April 2015 Copyright c©2015, Detlef Vollmann 23

Results From a NUMA Machine

• Dual-core Opterons, dual-socket

0

20000

40000

60000

80000

100000

120000

140000

160000

1 2 4 8 16

atomics-cst

atomics-relaxed

buffer

duplex

mutex

simplex

volatile

Atomic Counters at ACCU, Bristol, April 2015 Copyright c©2015, Detlef Vollmann 24

Single Socket Machine Results

• Quad-core Haswell, plus hyperthreading

0

100000

200000

300000

400000

500000

600000

1 2 4 8 16

atomics-cst

atomics-relaxed

buffer

duplex

mutex

simplex

volatile

volatile2

Atomic Counters at ACCU, Bristol, April 2015 Copyright c©2015, Detlef Vollmann 25

Morris’ Counter

• Morris’ algorithm provides a counter up to 130000 with
8 bit
– looses precision

• Dice,Lev,Moir scale that to higher numbers

• Less bit changes mean less updates

• Scales pretty well

Atomic Counters at ACCU, Bristol, April 2015 Copyright c©2015, Detlef Vollmann 26

Overflow

• Long running counters will overflow

• N3706 provides exchange to drain buffers

• strong_duplex does this on pull
– now a read/write operation

Atomic Counters at ACCU, Bristol, April 2015 Copyright c©2015, Detlef Vollmann 27

Distribution

• The answer to shared state

• Using local counters costs space

• Synchronization for reduction requires thought

• Avoid starvation on reduction

• Avoid false sharing for local counters

Atomic Counters at ACCU, Bristol, April 2015 Copyright c©2015, Detlef Vollmann 28

Conclusion

• Performant parallel counters are not atomic

• But if you don’t want to stop the world, that’s the
simple truth

• Modifying shared memory is expensive

• Creative solutions may help

• General solution is distribution

Atomic Counters at ACCU, Bristol, April 2015 Copyright c©2015, Detlef Vollmann 29

References

• N3706, Lawrence Crowl, ”C++ Distributed Counters”
http://open-
std.org/jtc1/sc22/wg21/docs/papers/2013/n3706.html

• ”Scalable Statstics Counters”
Dave Dice, Yossi Lev, Mark Moir; SPAA’13, June 23-25,
2013, Montreal Quebec, Canada

Atomic Counters at ACCU, Bristol, April 2015 Copyright c©2015, Detlef Vollmann 30

