
Immutability FTW! 

@KevlinHenney 



(I told you so...) 

@KevlinHenney 





Change is the 
only constant. 

Heraclitus 



You cannot step 
twice into the 
same river. 

Heraclitus 



Time is like a river, 
but frozen not flowing. 
Eddies, pools and falls 
are fixed in place, 
timeless and immutable. 

Kevlin Henney 
"Remembrance of Things Past" 

http://www.spec-fiction.ca/remembrance-of-things-past/ 



When it is not 
necessary to 
change, it is 
necessary not to 
change. 

Lucius Cary 



const 



LSP 



A type hierarchy is composed of subtypes and 
supertypes. The intuitive idea of a subtype is one 
whose objects provide all the behavior of objects 
of another type (the supertype) plus something 
extra. What is wanted here is something like the 
following substitution property: If for each 
object o1 of type S there is an object o2 of type T 
such that for all programs P defined in terms of T, 
the behavior of P is unchanged when o1 is 
substituted for o2, then S is a subtype of T. 

Barbara Liskov 
"Data Abstraction and Hierarchy" 



A type hierarchy is composed of subtypes and 
supertypes. The intuitive idea of a subtype is one 
whose objects provide all the behavior of objects 
of another type (the supertype) plus something 
extra. What is wanted here is something like the 
following substitution property: If for each 
object o1 of type S there is an object o2 of type T 
such that for all programs P defined in terms of T, 
the behavior of P is unchanged when o1 is 
substituted for o2, then S is a subtype of T. 

Barbara Liskov 
"Data Abstraction and Hierarchy" 



A type hierarchy is composed of subtypes and 
supertypes. The intuitive idea of a subtype is one 
whose objects provide all the behavior of objects 
of another type (the supertype) plus something 
extra. What is wanted here is something like the 
following substitution property: If for each 
object o1 of type S there is an object o2 of type T 
such that for all programs P defined in terms of T, 
the behavior of P is unchanged when o1 is 
substituted for o2, then S is a subtype of T. 

Barbara Liskov 
"Data Abstraction and Hierarchy" 



public class Ellipse 

{ 

    private double semiMajor, semiMinor;     

    public Ellipse(double a, double b) ... 

    public double semiMajorAxis() ... 

    public double semiMinorAxis() ... 

    public void semiMajorAxis(double a) ... 

    public void semiMinorAxis(double b) ... 

    ... 

} 

public class Circle extends Ellipse 

{ 

    public Circle(double r) ... 

    public double radius() ... 

    public void radius(double r) ... 

    ... 

} 



public class Ellipse 

{ 

    ... 

    public void semiMajorAxis(double a) ... 

    public void semiMinorAxis(double b) ... 

    ... 

} 

public class Circle extends Ellipse 

{ 

    ... 

    @Override 

    public void semiMajorAxis(double a) 

    { 

        throw new UnsupportedOperationException(); 

    } 

    @Override 

    public void semiMinorAxis(double b) ... 

    ... 

} 



The reason a solution is so hard to come by is because the 
problem is poorly stated: mathematics tells us that a circle is an 
ellipse, so I can substitute a circle wherever an ellipse is required, 
suggesting that a circle is a subtype of an ellipse. 

Kevlin Henney 
"Vicious Circles", Overload 8, June 1995 



The reason a solution is so hard to come by is because the 
problem is poorly stated: mathematics tells us that a circle is an 
ellipse, so I can substitute a circle wherever an ellipse is required, 
suggesting that a circle is a subtype of an ellipse. 

The troubles start when we introduce any state modifying 
functions, such as assignment or the ability to change the major 
and minor axes independently. 

Kevlin Henney 
"Vicious Circles", Overload 8, June 1995 



The reason a solution is so hard to come by is because the 
problem is poorly stated: mathematics tells us that a circle is an 
ellipse, so I can substitute a circle wherever an ellipse is required, 
suggesting that a circle is a subtype of an ellipse. 

The troubles start when we introduce any state modifying 
functions, such as assignment or the ability to change the major 
and minor axes independently. 

We are so confident that we understand the mathematical 
concepts behind circles and ellipses that we have not bothered to 
ask any more questions of that domain. 

Kevlin Henney 
"Vicious Circles", Overload 8, June 1995 



The first observation is that there is no way to change circles and 
ellipses once you have created them. 

Kevlin Henney 
"Vicious Circles", Overload 8, June 1995 



The first observation is that there is no way to change circles and 
ellipses once you have created them. 

This is the correct mathematical model: there are no side effects 
in maths, conic sections do not undergo state changes, and there 
are no variables in the programming sense of the word. 

Kevlin Henney 
"Vicious Circles", Overload 8, June 1995 



The first observation is that there is no way to change circles and 
ellipses once you have created them. 

This is the correct mathematical model: there are no side effects 
in maths, conic sections do not undergo state changes, and there 
are no variables in the programming sense of the word. 

Readers who are comfortable and familiar with functional 
programming and data flow models will recognise the approach.  

Kevlin Henney 
"Vicious Circles", Overload 8, June 1995 



The first observation is that there is no way to change circles and 
ellipses once you have created them. 

This is the correct mathematical model: there are no side effects 
in maths, conic sections do not undergo state changes, and there 
are no variables in the programming sense of the word. 

Readers who are comfortable and familiar with functional 
programming and data flow models will recognise the approach.  

In the case of circles and ellipses, the circle is simply an ellipse 
with specialised invariants. There is no additional state and none 
of the members of an ellipse need overriding as they apply 
equally well to a circle. 

Kevlin Henney 
"Vicious Circles", Overload 8, June 1995 



public class Ellipse 

{ 

    private double semiMajor, semiMinor;     

    public Ellipse(double a, double b) ... 

    public double semiMajorAxis() ... 

    public double semiMinorAxis() ... 

    ... 

} 

public class Circle extends Ellipse 

{ 

    public Circle(double r) ... 

    public double radius() ... 

    ... 

} 



«interface» 

UsageInterface 

CommonCode 

ConcreteLeaf ConcreteLeaf 

Pure Interface Layer 
Interfaces may extend 

interfaces, but there is no 

implementation defined in 

this layer. 

Common Code Layer 
Only abstract classes are 

defined in this layer, possibly 

with inheritance, factoring out 

any common implementation. 

Concrete Class Layer 
Only concrete classes are 

defined, and they do not 

inherit from one another. 
ConcreteLeaf 



public interface Ellipse 

{ 

    double semiMajorAxis(); 

    double semiMinorAxis(); 

    ... 

} 

public interface Circle extends Ellipse 

{ 

    double radius(); 

    ... 

} 



public class ??? implements Ellipse 

{ 

    private double semiMajorAxis, semiMinorAxis; 

    ... 

} 

public class ??? implements Circle 

{ 

    private double radius; 

    ... 

} 



public class ??? implements Ellipse 

{ 

    private double semiMajorAxis, semiMinorAxis; 

    ... 

} 

public class ??? implements Circle 

{ 

    private double radius; 

    ... 

} 

The Naming of Cats is a difficult matter, 

It isn't just one of your holiday games; 

You may think at first I'm as mad as a hatter 

When I tell you, a cat must have THREE DIFFERENT NAMES. 

[...] 

But above and beyond there's still one name left over, 

And that is the name that you never will guess; 

The name that no human research can discover— 

But THE CAT HIMSELF KNOWS, and will never confess. 

[...] 

T S Eliot 



public class Ellipse 

{ 

    private double semiMajor, semiMinor;     

    public Ellipse(double a, double b) ... 

    public double semiMajorAxis() ... 

    public double semiMinorAxis() ... 

    ... 

} 

public class Circle 

{ 

    private double radius; 

    public Circle(double r) ... 

    public double radius() ... 

    public Ellipse toEllipse() ... 

    ... 

} 



public class Ellipse 

{ 

    private double semiMajor, semiMinor;     

    public Ellipse(double a, double b) ... 

    public double semiMajorAxis() ... 

    public double semiMinorAxis() ... 

    public boolean isCircle() ... 

    ... 

} 



Conversions 

Overloading 

Derivation 

Genericity 

Mutability 



Phenomenon: An element of what we can observe 

in the world. Phenomena may be individuals or 

relations. Individuals are entities, events, or 

values. Relations are roles, states, or truths. 

Individual: An individual is a phenomenon that 

can be named and is distinct from every other 

individual: for example, the number 17, George 

III, or Deep Blue's first move against Kasparov. 

Value: A value is an intangible individual that 

exists outside time and space, and is not subject 

to change. 







Immutable Value 

References to value objects are commonly distributed and 

stored in fields. However, state changes to a value caused 

by one object can have unexpected and unwanted side-

effects for any other object sharing the same value 

instance. Copying the value can reduce the 

synchronization overhead, but can also incur object 

creation overhead. 

Therefore: 

Define a value object type whose instances are immutable. 

The internal state of a value object is set at construction 

and no subsequent modifications are allowed. 



public class Date implements ... 
{ 
    ... 
    public int getYear() ... 
    public int getMonth() ... 
    public int getDayInMonth() ... 
    public void setYear(int newYear) ... 
    public void setMonth(int newMonth) ... 
    public void setDayInMonth(int newDayInMonth) ... 
    ... 
} 



public class Date implements ... 
{ 
    ... 
    public int getYear() ... 
    public int getMonth() ... 
    public int getWeekInYear() ... 
    public int getDayInYear() ... 
    public int getDayInMonth() ... 
    public int getDayInWeek() ... 
    public void setYear(int newYear) ... 
    public void setMonth(int newMonth) ... 
    public void setWeekInYear(int newWeek) ... 
    public void setDayInYear(int newDayInYear) ... 
    public void setDayInMonth(int newDayInMonth) ... 
    public void setDayInWeek(int newDayInWeek) ... 
    ... 
} 



public final class Date implements ... 
{ 
    ... 
    public int getYear() ... 
    public int getMonth() ... 
    public int getWeekInYear() ... 
    public int getDayInYear() ... 
    public int getDayInMonth() ... 
    public int getDayInWeek() ... 
    ... 
} 



public final class Date implements ... 
{ 
    ... 
    public int year() ... 
    public int month() ... 
    public int weekInYear() ... 
    public int dayInYear() ... 
    public int dayInMonth() ... 
    public int dayInWeek() ... 
    ... 
} 











Copied Value 

Value objects are commonly distributed and stored in 

fields. If value objects are shared between threads, 

however, state changes caused by one object to a value 

can have unexpected and unwanted side effects for any 

other object sharing the same value instance. In a multi-

threaded environment shared state must be synchronized 

between threads, but this introduces costly overhead for 

frequent access. 

Therefore: 

Define a value object type whose instances are copyable. 

When a value is used in communication with another 

thread, ensure that the value is copied. 



class date 
{ 
public: 
    date(int year, int month, int day_in_month); 
    date(const date &); 
    date & operator=(const date &); 
    ... 
    int year() const; 
    int month() const; 
    int day_in_month() const; 
    ... 
    void year(int); 
    void month(int); 
    void day_in_month(int); 
    ... 
}; 



class date 
{ 
public: 
    date(int year, int month, int day_in_month); 
    date(const date &); 
    date & operator=(const date &); 
    ... 
    int year() const; 
    int month() const; 
    int day_in_month() const; 
    ... 
    void set(int year, int month, int day_in_month); 
    ... 
}; 

today.set(2014, 4, 11); 



class date 
{ 
public: 
    date(int year, int month, int day_in_month); 
    date(const date &); 
    date & operator=(const date &); 
    ... 
    int year() const; 
    int month() const; 
    int day_in_month() const; 
    ... 
}; 

today = date(2014, 4, 11); 





Referential transparency is a very 

desirable property: it implies that 

functions consistently yield the same 

results given the same input, 

irrespective of where and when they are 

invoked. That is, function evaluation 

depends less—ideally, not at all—on the 

side effects of mutable state. 
 

 

 

Edward Garson 
"Apply Functional Programming Principles" 



A book is simply the 

container of an idea like 

a bottle; what is inside 

the book is what matters. 

Angela Carter 



// "FTL" (Functional Template Library) 
// container style 
 
template<typename ValueType> 
class container 
{ 
public: 
    typedef const ValueType value_type; 
    typedef ... iterator; 
    ... 
    bool empty() const; 
    std::size_t size() const; 
    iterator begin() const; 
    iterator end() const; 
    ... 
    container & operator=(const container &); 
    ... 
}; 



template<typename ValueType> 
class set 
{ 
public: 
    typedef const ValueType * iterator; 
    ... 
    set(std::initializer_list<ValueType> values); 
    ... 
    bool empty() const; 
    std::size_t size() const; 

    iterator begin() const; 
    iterator end() const; 

    iterator find(const ValueType &) const; 
    std::size_t count(const ValueType &) const; 
    iterator lower_bound(const ValueType &) const; 
    iterator upper_bound(const ValueType &) const; 
    pair<iterator, iterator> equal_range(const ValueType &) const; 
    ... 
private: 
    ValueType * members; 
    std::size_t cardinality; 
}; 

set<int> c = { 2, 9, 9, 7, 9, 2, 4, 5, 8 }; 



template<typename ValueType> 
class array 
{ 
public: 
    typedef const ValueType * iterator; 
    ... 
    array(std::initializer_list<ValueType> values); 
    ... 
    bool empty() const; 
    std::size_t size() const; 

    iterator begin() const; 
    iterator end() const; 

    const ValueType & operator[](std::size_t) const; 
    const ValueType & front() const; 
    const ValueType & back() const; 
    const ValueType * data() const; 
    ... 
private: 
    ValueType * elements; 
    std::size_t length; 
}; 

array<int> c = { 2, 9, 9, 7, 9, 2, 4, 5, 8 }; 



template<typename ValueType> 
class vector 
{ 
public: 
    typedef const ValueType * iterator; 
    ... 
    bool empty() const; 
    std::size_t size() const; 

    iterator begin() const; 
    iterator end() const; 

    const ValueType & operator[](std::size_t) const; 
    const ValueType & front() const; 
    const ValueType & back() const; 
    const ValueType * data() const; 

    vector popped_front() const; 
    vector popped_back() const; 
    ... 
private: 
    ValueType * anchor; 
    iterator from, until; 
}; 



In computing, a persistent data structure is a data structure 
that always preserves the previous version of itself when it is 
modified. Such data structures are effectively immutable, as 
their operations do not (visibly) update the structure in-place, 
but instead always yield a new updated structure. 

http://en.wikipedia.org/wiki/Persistent_data_structure 

(A persistent data structure is not a data structure committed 
to persistent storage, such as a disk; this is a different and 
unrelated sense of the word "persistent.") 



template<typename ValueType> 
class vector 
{ 
public: 
    typedef const ValueType * iterator; 
    ... 
    bool empty() const; 
    std::size_t size() const; 

    iterator begin() const; 
    iterator end() const; 

    const ValueType & operator[](std::size_t) const; 
    const ValueType & front() const; 
    const ValueType & back() const; 
    const ValueType * data() const; 

    vector popped_front() const; 
    vector popped_back() const; 
    void pop_front(); 
    void pop_back(); 
    ... 
private: 
    ValueType * anchor; 
    iterator from, until; 
}; 





I still have a deep fondness for the 
Lisp model. It is simple, elegant, and 
something with which all developers 
should have an infatuation at least 
once in their programming life. 

Kevlin Henney 
"A Fair Share (Part I)", CUJ C++ Experts Forum, October 2002 



lispt 



template<typename ValueType> 
class list 
{ 
public: 
    class iterator; 
    ... 
    std::size_t size() const; 

    iterator begin() const; 
    iterator end() const; 

    const ValueType & front() const; 
    list popped_front() const; 
    list pushed_front() const; 
    void pop_front(); 
    void push_front(const ValueType &); 
    ... 
private: 
    struct link 
    { 
        link(const ValueType & value, link * next); 

        ValueType value; 
        link * next; 
    }; 
    link * head; 
    std::size_t length; 
}; 



Hamlet: Yea, from the table of 
my memory I'll wipe away all 
trivial fond records. 

William Shakespeare 

The Tragedy of Hamlet 

[Act I, Scene 5] 



Garbage collection [...] is optional 
in C++; that is, a garbage collector 
is not a compulsory part of an 
implementation. 

Bjarne Stroustrup 
http://stroustrup.com/C++11FAQ.html 



assert( 
  std::get_pointer_safety() == 
  std::pointer_safety::strict); 



public interface RecentlyUsedList 

{ 

 static final RecentlyUsedList nil = new Null(); 

 boolean isEmpty(); 

 int size(); 

 String get(int index); 

 RecentlyUsedList add(String newItem); 

 RecentlyUsedList remove(String toRemove); 

} 

RecentlyUsedList list = 

    nil.add("Alice").add("Bob").add("Alice"); 

assert list.size() == 2; 

assert list.get(0).equals("Alice"); 

assert list.get(1).equals("Bob"); 



Ophelia: 'Tis in my memory 
locked, and you yourself shall 
keep the key of it. 

William Shakespeare 

The Tragedy of Hamlet 

[Act I, Scene 3] 



A use-counted class is more 

complicated than a non-use-

counted equivalent, and all of 

this horsing around with use 

counts takes a significant 

amount of processing time. 

Robert Murray 

C++ Strategies and Tactics 



template<typename ValueType> 
class vector 
{ 
public: 
    typedef const ValueType * iterator; 
    ... 
    bool empty() const; 
    std::size_t size() const; 

    iterator begin() const; 
    iterator end() const; 

    const ValueType & operator[](std::size_t) const; 
    const ValueType & front() const; 
    const ValueType & back() const; 
    const ValueType * data() const; 

    vector popped_front() const; 
    vector popped_back() const; 
    void pop_front(); 
    void pop_back(); 
    ... 
private: 
    std::shared_ptr<ValueType> anchor; 
    iterator from, until; 
}; 

Uses std::default_delete<ValueType[]>, but 
cannot be initialised from std::make_shared. 



template<typename CharType> 
class string; 
 
template<typename CharType> 
class string<const CharType>; 

"Distinctly Qualified", CUJ C++ Experts Forum, May 2001 



template<typename CharType> 
class string; 



template<typename ValueType> 
class list 
{ 
public: 
    class iterator; 
    ... 
    std::size_t size() const; 

    iterator begin() const; 
    iterator end() const; 

    const ValueType & front() const; 
    list popped_front() const; 
    list pushed_front() const; 
    void pop_front(); 
    void push_front(const ValueType &); 
    ... 
private: 
    struct link 
    { 
        link(const ValueType & value, std::shared_ptr<link> next); 

        ValueType value; 
        std::shared_ptr<link> next; 
    }; 
    std::shared_ptr<link> head; 
    std::size_t length; 
}; 



{ 
    list<Anything> chain; 
    std::fill_n( 
        std::front_inserter(chain), 
        how_many, 
        something); 
} 

On destruction, deletion of links is recursive 
through each link, causing the stack to blow up 
for surprisingly small values of how_many. 







paraskevidekatriaphobia, noun 
 The superstitious fear of Friday 13th. 

 Contrary to popular myth, this superstition is relatively recent 

(19th century) and did not originate during or before the 

medieval times. 

 Paraskevidekatriaphobia (or friggatriskaidekaphobia) also 

reflects a particularly egocentric attributional bias: the universe 

is prepared to rearrange causality and probability around the 

believer based on an arbitrary and changeable calendar system, 

in a way that is sensitive to geography, culture and time zone. 

WordFriday.com 



struct tm next_friday_13th(const struct tm * after) 
{ 
    struct tm next = *after; 
    enum { daily_secs = 24 * 60 * 60 }; 
    time_t seconds = 
        mktime(&next) + 
        (next.tm_mday == 13 ? daily_secs : 0); 
    do 
    { 
        seconds += daily_secs; 
        next = *localtime(&seconds); 
    } 
    while(next.tm_mday != 13 || next.tm_wday != 5); 
    return next; 
} 



std::find_if( 
    ++begin, day_iterator(), 
    [](const std::tm & day) 
    { 
        return day.tm_mday == 13 && day.tm_wday == 5; 
    }); 



class day_iterator : public std::iterator<...> 
{ 
public: 
    day_iterator() ... 
    explicit day_iterator(const std::tm & start) ... 
    const std::tm & operator*() const 
    { 
        return day; 
    } 
    const std::tm * operator->() const 
    { 
        return &day; 
    } 
    day_iterator & operator++() 
    { 
        std::time_t seconds = std::mktime(&day) + 24 * 60 * 60; 
        day = *std::localtime(&seconds); 
        return *this; 
    } 
    day_iterator operator++(int) ... 
    ... 
}; 



var friday13ths = 
    from day in Days.After(start) 
    where day.Day == 13 
    where day.DayOfWeek == DayOfWeek.Friday 
    select day; 
 
foreach(var irrationalBelief in friday13ths) 
{ 
    ... 
} 



public class Days : IEnumerable<DateTime> 
{ 
    public static Days After(DateTime startDay) 
    { 
        return new Days(startDay.AddDays(1)); 
    } 
    public IEnumerator<DateTime> GetEnumerator() 
    { 
        for(var next = startDay;; next = next.AddDays(1)) 
            yield return next; 
    } 
    ... 
    private DateTime startDay; 
} 



Iterator 

Clients often want to traverse elements that are 

encapsulated within an aggregate, such as the 

elements maintained by a collection. Clients may not 

wish, however, to depend on the aggregate’s internal 

structure to access components of interest. 

Therefore: 

Objectify the strategy to access and traverse the 

components maintained by the aggregate into a 

separate iterator component. Let this iterator be the 

only means for clients to access the component. 



Enumeration Method 

Some types of aggregate [...] have representations that do 

not conveniently support Iterator-based traversal. 

Similarly, using an Iterator approach to access the 

elements of an aggregate that is shared between threads 

can incur unnecessary overhead from repeated locking. 

Therefore: 

Bring the iteration inside the aggregate and encapsulate 

it in a single enumeration method that is responsible for 

complete traversal. Pass the task of the loop—the action 

to be executed on each element of the aggregate—as an 

argument to the enumeration method, and apply it to 

each element in turn. 



Lifecycle Callback 

The lifecycle of some objects is simple: their clients 

create them before they are used, they stay alive as 

long as they are used, and they are disposed of by 

their clients when no longer used. However, some 

objects have a much more complex lifecycle, driven by 

the needs and events of their component environment. 

Therefore: 

Define key lifecycle events as callbacks in an interface 

that is supported by framework objects. The 

framework uses the callbacks to control the objects’ 

lifecycle explicitly. 



public interface IObservable<out T> 

{ 

    IDisposable Subscribe(IObserver<T> observer); 

} 

 

public interface IObserver<in T>  

{ 

    void OnCompleted(); 

    void OnError(Exception error); 

    void OnNext(T value); 

}  

IDisposable subscription = 

    source.Subscribe( 

        value => handle element, 

        error => handle exception, 

        () => handle completion); 



Observer 

Consumer objects sometimes depend on the state of, or 

data maintained by, another provider object. If the 

state of the provider object changes without notice, 

however, the state of the dependent consumer objects 

can become inconsistent. 

Therefore: 

Define a change-propagation mechanism in which the 

provider—known as the ‘subject’—notifies registered 

consumers—known as the ‘observers’—whenever its 

state changes, so that the notified observers can 

perform whatever actions they deem necessary. 



void run(const function tests[], const char * label, listener & sink); 

    // precondition: tests is a non-null null-terminated array 
    // execution: 
    //  sink.start_testing(label) -> 
    //  (for each test in tests: 
    //   (sink.before_test(...) -> 
    //    (test executed -> 
    //     (one of: 
    //      (sink.test_passed(...) | 
    //       sink.assertion_failed(...) | 
    //       sink.exception_thrown(...))) 
    //    sink.after_test(...))) -> 
    //  sink.finish_testing(label) 

SHUTL (Single-Header Unit Testing Lite), ACCU Conference 2007 



void run(const function tests[], const char * label, listener & sink); 

    // precondition: tests is a non-null null-terminated array 
    // execution: 
    //  sink.start_testing(label) -> 
    //  (for each test in tests: 
    //   (sink.before_test(...) -> 
    //    (test executed -> 
    //     (one of: 
    //      (sink.test_passed(...) | 
    //       sink.assertion_failed(...) | 
    //       sink.exception_thrown(...))) 
    //    sink.after_test(...))) -> 
    //  sink.finish_testing(label) 

SHUTL (Single-Header Unit Testing Lite), ACCU Conference 2007 



SHUTL (Single-Header Unit Testing Lite), ACCU Conference 2007 

class listener 
{ 
public: 

    ... start_testing(...) = 0; 
 
    ... before_test(...) = 0; 
 
 
    ... test_passed(...) = 0; 
    ... assertion_failed(...) = 0; 
    ... exception_thrown(...) = 0; 
    ... after_test(...) = 0; 
    ... finish_testing(...) = 0; 

}; 

 

 
 
sink.start_testing(label) -> 
(for each test in tests: 
 (sink.before_test(...) -> 
  (test executed -> 
   (one of: 
    (sink.test_passed(...) | 
     sink.assertion_failed(...) | 
     sink.exception_thrown(...))) 
  sink.after_test(...))) -> 
sink.finish_testing(label) 





Concurrency 



Concurrency 

Threads 



Concurrency 

Threads 

Locks 



Some people, when confronted with a 
problem, think, "I know, I'll use threads," 
and then two they hav erpoblesms. 

Ned Batchelder 
https://twitter.com/#!/nedbat/status/194873829825327104 



Shared memory is like a canvas where 
threads collaborate in painting images, 
except that they stand on the opposite 
sides of the canvas and use guns rather 
than brushes. The only way they can 
avoid killing each other is if they shout 
"duck!" before opening fire. 

Bartosz Milewski 
"Functional Data Structures and Concurrency in C++" 

http://bartoszmilewski.com/2013/12/10/functional-data-structures-and-concurrency-in-c/ 



Mutable 

Immutable 

Unshared Shared 

Unshared mutable 
data needs no 
synchronisation 

Unshared immutable 
data needs no 
synchronisation 

Shared mutable 
data needs 
synchronisation 

Shared immutable 
data needs no 
synchronisation 



Instead of using threads and shared memory 

as our programming model, we can use 

processes and message passing. Process here 

just means a protected independent state 

with executing code, not necessarily an 

operating system process. 

 

 

 

 

 

 

Russel Winder 
"Message Passing Leads to Better Scalability in Parallel Systems" 



OOP to me means only messaging, 
local retention and protection and 
hiding of state-process, and 
extreme late-binding of all things. 
It can be done in Smalltalk and in 
LISP. There are possibly other 
systems in which this is possible, 
but I'm not aware of them. 

Alan Kay 



Languages such as Erlang (and occam before 

it) have shown that processes are a very 

successful mechanism for programming 

concurrent and parallel systems. Such 

systems do not have all the synchronization 

stresses that shared-memory, multithreaded 

systems have. 

 

 

 

 

 

Russel Winder 
"Message Passing Leads to Better Scalability in Parallel Systems" 





Multithreading is just one 
damn thing after, before, or 
simultaneous with another. 

Andrei Alexandrescu 



Actor-based concurrency is 
just one damn message after 
another. 



Sender Receiver A 

Message 1 Message 3 

Receiver B 

In response to a message that it receives, an actor 
can make local decisions, create more actors, send 
more messages, and determine how to respond to 
the next message received. 

http://en.wikipedia.org/wiki/Actor_model 

 



Concatenative programming is so called 
because it uses function composition instead of 
function application—a non-concatenative 
language is thus called applicative. 

Jon Purdy 
http://evincarofautumn.blogspot.in/2012/02/ 

why-concatenative-programming-matters.html 



f(g(h(x))) 



(f ○ g ○ h)(x) 



x h g f 



f ○ g ○ h 



h | g | f 



This is the basic reason Unix pipes are so 
powerful: they form a rudimentary string-based 
concatenative programming language. 

Jon Purdy 
http://evincarofautumn.blogspot.in/2012/02/ 

why-concatenative-programming-matters.html 





Pipes and Filters 

Some applications process streams of data: input data 

streams are transformed stepwise into output data 

streams. However, using common and familiar 

request/response semantics for structuring such types 

of application is typically impractical. Instead we must 

specify an appropriate data flow model for them. 

Therefore: 

Divide the application's task into several self-contained 

data processing steps and connect these steps to a 

data processing pipeline via intermediate data buffers. 





function GetNextFriday13th($from) { 
    [DateTime[]] $friday13ths = 
        (1..500) | 
        %{ $from.AddDays($_) } | 
        ?{ $_.Day -eq 13} | 
        ?{ $_.DayOfWeek -eq [DayOfWeek]::Friday } 
    return $friday13ths[0] 
} 



[DateTime[][]] $inputsWithExpectations = 
    ("2001-07-13", "2002-09-13"), 
    ("2007-04-01", "2007-04-13"), 
    ("2007-04-12", "2007-04-13"), 
    ("2007-04-13", "2007-07-13"), 
    ("2011-01-01", "2011-05-13"), 
    ("2011-05-13", "2012-01-13"), 
    ("2012-01-01", "2012-01-13"), 
    ("2012-01-13", "2012-04-13"), 
    ("2012-04-13", "2012-07-13"), 
    ("2014-04-11", "2014-06-13") 
 
$inputsWithExpectations | ?{ 
    [String] $actual = GetNextFriday13th($_[0]) 
    [String] $expected = $_[1] 
    $actual -ne $expected 
} 



Everything 
flows, nothing 
stands still. 

Heraclitus 







Go with 
the flow. 

Queens of the Stone Age 


