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Overview

• C++ committee and its operation

• language improvements

• r-value references and move semantics

• auto, decltype, and lambda functions

• concurrency support

• library enhancements
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C++ 2011 Availability

• most compilers support some new features

• typically some compile-time flag is used:

• gcc: -std=c++11    <http://gcc.gnu.org/>

• clang: -std=c++11 <http://clang.llvm.org/>

• EDG: --c++0x

• MS VC++: enabled by default
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Language Improvements

• final/override, defaulted/deleted functions

• initialisation: uniform, in class definition, lists 

• delegating constructors, explicit conversion

• nullptr, static assertion, constant expression

• strongly typed and forward declared enums

• integer types, string literals
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Stopping Inheritance

• prevent a class from being a base class:
struct not_a_base final { ... };

• final is part of the class definition

• prevent overriding of a virtual function:
struct base             { virtual void f(); ... };
struct derived: base { void f() final; ... };

• final is not a keyword
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Overriding Functions

• catch mistakes when overriding functions

struct B { virtual void f(int); ... };
struct D1: B { void f(int) override; }; // OK
struct D2: B { void f(long) override; }; // error
struct D3: B { void f(long); //hiding intentional?

• override is not a keyword
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Defaulted Functions

• define a function like it would be generated

struct S {
  S();
  S(int); // => no implicit default constructor
  virtual S& operator=(S const&) = default;
};
S::S() = default; // non-inline definition
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Defaultable Functions

• default constructor: S::S()

• copy constructor: S::S(S cv&)

• move constructor: S::S(S&&)

• copy assignment: S::operator= (S cv&)

• move assignment: S::operator= (S&&)

• destructor: S::~S()
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Deleted Functions

• prevent use of functions:
struct B { void foo(); };
struct S: B {
  S(S const&) = delete;
  void operator= (S const&) = delete;
  void foo() = delete;
  void just_for_the_fun_of_it() = delete;
};
bool operator== (S, S) = delete;
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Uniform Initialisation

• Braces {} can be used for ctor arguments:

struct S { S(int i = 0): m{i} {} int m; };
void f() {
  S s0{};
  S s1{1};
};
struct A { A(): a{0, 1, 2, 3} {} int a[4]; };
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• narrowing conversion is an error, e.g.:
long   l{17};
short s{2}; // ERROR: narrowing conversion

• doesn’t suffer from most vexing parse:
typedef istream_iterator<int> in_it;
vector<int> f(in_it(cin), in_it());
vector<int> v{in_it(cin), in_it()};

• f is a function, v is a vector<int>

Uniform Initialisation
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Initialiser Lists

• let functions take argument lists:

#include <initializer_list>
void f(std::initializer_list<int> list);
f({ 0, 1, 2, 3 });
std::vector<int> v{ 0, 1, 2, 3 };
std::list<int>       l{ 0, 1, 2, 3 };

• std::initializer_list<T> is similar to container
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std::initializer_list<T>

• same type for different sizes (unlike arrays)

• all members are const and noexcept

• usual container typedefs:
value_type, reference, const_reference, 
size_type, iterator, const_iterator

• default constructor

• begin(), end(), size()

Tuesday, 8 May 12



Member Initialisation

• members can be initialised where defined

• member initialiser list takes precedence

struct S {
  std::string s_ = “hello”;
  S() {}                            // s_ == “hello”
  S(std::string s): s_{s} {}   // s_ == s
};
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Delegating Constructors

• constructors can delegate to others:

struct S {
  S(int i);
  S(std::string s): S{atoi(s.c_str()} {}
  S(): S{“17”} {} // yes, a bit silly...
};
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Inheriting Constructors

• ctors can be inherited from the direct base

• the class can still add members and ctors
struct B { B(int); B(std::string); ... };
struct D: B {
  using B::B;
  D(): B{17}, v_(0) {}
  int v_ = 1;
};
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Explicit Conversion

• conversion operators can be made explicit
struct some_ptr {
  explicit operator bool() const;
  ...
};
some_ptr p = ...;
if (p) ...                // OK: explicitly bool
int v(p << 3);       // no implicit conversion
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Null Pointer

• nullptr converts only to pointer types

• nullptr is a keyword

• will become the spelling for null pointers

• nullptr_t defined in <cstddef>

int* p = nullptr;
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Static Assert

• produce conditional compile-time errors

• condition is a constant expression

• most useful in template code

• useful to detect restrictions early on

static_assert(sizeof(int) < sizeof(long),
                    “int isn’t big enough”);
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Constant Expressions

• constant expressions extended to functions

• have to be declared as constexpr

• only one statement: a return

• can only use constant expressions

• arguments CEs => result CE

• definition has to be visible at point of use
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Constexpr Function

enum BM { a = 0x01, b = 0x02 };
BM constexpr operator| (BM x, BM y) {
  return BM(int{x} | int{y});
}
void something(BM x) {
  BM y = a | b;
  switch (x) { case a | b: ...; }
}
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Constexpr Value

• values can be constant expressions
struct S {
    static int constexpr       iv = 17;
    static double constexpr dv = 3.14;
};

• requires initialization (unlike const)

• requires a definition when address is used
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Constexpr Constructor

• objects of user type can be constexpr
struct S {
  constexpr S(int v): v_{v} {}
  int v_;
};
S constexpr o(17);
enum { value = o.v_ };
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Strongly Typed Enums

• enums have loads of problems:

• they litter the enclosing namespace

• implicitly convert to integer types

• use an unpredictable underlying type

• the fix: strongly typed enums
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Strongly Typed Enums

• declaration:
enum class E      { v1, v2, v3 };
enum class F: int { v1, v2, v3 };

• no implicit conversion to integers

• values need qualification, e.g. E::v1 or F::v1

• the underlying integral type can be chosen
(it is an error if the values don’t fit)
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Half-Hearted Enums

• for legacy uses strong enums may not work

• a migration path is supported, however:

• the underlying integral type can be chosen

• the scoped names work for all enums

• nothing else changes
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Forward Declare Enums

• enums can be forward declared

• requires the underlying type:
enum class E: int;
E e_val{17};
enum class E: int { e1, e2 };

• works with strong and legacy enums
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Integral Types

• 64 bit integers: long long/unsigned long long

• more character types (we had only 4):

• UTF-16 encoded: char16_t

• UTF-32 encoded: char32_t

• <uchar.h>, <uchar> for some functions 
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Character Types

Type encoding char string class

char ? ‘a’ “a” string

char UTF-8 - u8”a” string

wchar_t ? L’a’ L”a” wstring

char16_t UTF-16 u’a’ u”a” c16string

char32_t UTF-32 U’a’ U”a” c32string
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Raw String Literals

• all string literals have a “raw” version

• inside the raw literal no escapes matter

• start and end use same delimiter:
R”abc(content)abc” - abc is the delimiter
R”(content)”           - no delimiter
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R-Value References

• references to objects about to disappear

• move construction and moving objects

• using moves vs. exceptions
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First: L-Values

• l-values are objects you can refer to

• anything which has a name
(including its aliases i.e. references)

• objects being pointed to

• l-values may be const or volatile

• not all objects are l-values
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Not L-Values

• unnamed temporary objects are not l-values

• any unnamed object created

• the object returned from a function

• intermediate objects in an expression

• about to disappear when getting hold of them
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R-Value References

• T&& x is an r-value reference for type T

• r-value references can only bind to r-values

• the object is about to go away

• x has name

• .. and hence x binds to l-value references!
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Move Construction

• consider the constructor: T(T&& obj)

• the referenced object is about to go away

• it is safe to move its state to *this

• ... and leave obj in a destructible state

• ... which doesn’t release anything
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Move Example

struct S {
    S(int i): p_{new int{i}} {}
    S(S&& other): p_{other.p_} { other.p_ = 0; }
    ~S() { delete this->p_; }
    ...
private:
    int* p_;
};
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Overload Resolution

Overload l-value const l-value r-value

T x = ...;
f(x);

T const x = ...;
f(x);

f(T{...});

f(T&)

f(T const&)

f(T&& x)

preferred never never

OK OK OK

never never preferred
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Move Constructor Use

T f() { return T{}; }            // move construction
T g() { T x{ ... }; return x; } // move construction

void h() {
    T r{f()};                        // move construction
} 

(at least conceptually - probably elided, though) 
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std::move()

• std::move() allows moving l-values

• std::move() doesn’t actually move

• creates r-value reference for r- and l-values

• returning an l-value from a function:

T x = ...; T y = ...;
return std::move(cond? x: y);
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std::move() Caveat

• std::move(x) promises that x isn’t used again

• x is about to be destroyed or

• x is about to be assigned to

• either way its state can be moved

• lying about this may be fatal

• thus: use std::move(x) carefully!
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Move Assignment
struct S {
    S(S&& o): p_{o.p_} { o.p_ = 0; }
    S& operator= (S&& o) {
        delete this->p_;
        this->p_ = o.p_; o.p_ = 0; return *this;
    }
    ...
private:
    int* p_;
};
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Moving Objects

• e.g. make/fill space in a std::vector<T>:

for (; i != v.size(); ++i)
    v[i - 1] = std::move(v[i]);

• uses move assignment

• std::move(begin, end, to) does this

• but what happens if moving throws?
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Move vs. Copy

• moving or copying resources may fail

• copying objects often supports roll-back

• moving objects doesn’t support roll-back:
the moved from objects are unusable

• only non-throwing move instead of copy

• in most cases move doesn’t throw 
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Moving vs. Exceptions

• moving is an optimisation in many places

• copying yields strong exception guarantee

• moving needs has to give same guarantee

• necessary to tell if something might throw

• need to declare if something might throw 
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noexcept Declaration

• mark that a function never throws, e.g.:
void f() noexcept;

• optionally uses a bool constant expression:
void f() noexcept(true);   // never throws
void g() noexcept(false);  // might throw
void h() noexcept(sizeof(int) <= 2);

• similar to throw() but no run-time overhead
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noexcept Expression

• test if an expression will never throw e.g.
if (noexcept(f())) ...

• this is a constant expression

• the argument is not evaluated

• tests if the overall expression might throw

• this includes “invisible” operations (e.g. 
construction/destruction of temporaries)
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noexcept Expression

• consider noexcept(T{std::move(x)})

• x won’t throw

• std::move(x) is declared be noexcept

• T{...} actually does two things:

• (move?) constructs a T object

• destroys the T object just created
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noexcept Example

template <typename T>
void swap(T& t0, T& t1)
  noexcept(noexcept(T{std::move(t0)})
        && noexcept(t0 = std::move(t1))) {
  T tmp{std::move(t0)};
  t0 = std::move(t1);
  t1 = std::move(tmp);
}
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noexcept Caveats

• noexcept is not statically enforced

• noexcept function throws => terminate

• similar to using throw()

• no guarantee on stack unwinding

• destructors implicitly become noexcept!

• throwing dtor needs noexcept(false)
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Uses of Moving

• for non-copyable or expensive to copy types

• putting objects into containers

• returning objects

• passing objects around

• optimising reorganisations (when noexcept)
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Generated Move

• move operation may be compiler generated

• if no user defined copy, dtor, or move

• if all the members are movable

• user implementation can use = default
(if all members are movable)

• generated operations move all subobjects
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Automatic Types

• deduce types of initialised variables:
auto var1(some_expression);
auto var2 = some_expression;

• breaks some existing code:
auto int i;
auto int j(17);

• the fix: remove auto or the type
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Automatic Types

• can be used where defining a variable

• cannot be used for members or arguments

• derived types can be deduced, too:
auto            x = 17;
auto const& c = 17;
auto*           p = &c;

• same rules as for template arguments
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Type Deduction

auto auto& auto const& auto&&

S x;
... a = x;

S const c;
... a = c;

... a= S{};

S S S S&

S error S S const&

S error S S
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Type of Expression

• decltype(expression)

• can be used anywhere a type can be used

• does not evaluate the expression

• yields the exact type of the expression

• use type traits to manipulate the type
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Type Traits

• compile-time inspection of types

• declared in <type_traits>

• made accessible via a library interface

• various Boolean values to check properties

• various type transformation

• used e.g. to improve algorithm behaviour
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Example Type Traits

is_abstract is_integral is_enum

is_object is_fundamental is_trivial

is_constructible is_polymorphic is_class

is_destructible is_copy_constructible is_pod

is_base_of has_virtual_destructor is_same

remove_const add_lvalue_reference make_signed
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decltype Examples
typedef decltype(0) int_type;
decltype(‘c’) f();

struct S { decltype(f()) m_; };

std::vector<decltype(f())> v(10, f());

// below doest not work (x isn’t declared, yet):
template <typename T>
decltype(x * x) g(T x) { return x * x; }
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Function Declaration

• alternate function declaration syntax:
auto name(type arg) -> result;

• auto main(int ac, char* av[]) -> int { ... }

• template <typename T>
auto square(T x) -> decltype(x * x) { ... }
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Lambda Functions

• [capture](arguments) mutable -> type { ... }

• capture: how are variables referenced

• opt: arguments: normal argument declaration

• opt: mutable: can mutate captured variables?

• opt: type of the result
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Lambda Example

std::string v("hello, world");
std::transform(v.begin(), v.end(), v.begin(),
 [](unsigned char c){ return toupper(c); });
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Return Type

• defined using new style syntax

• the return type can be omitted sometimes:

• if there is no return statement ⇒ void

• if there is one return only ⇒ deduced

• otherwise return needs to be specified
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Lambda Arguments

• no arguments ⇒ can omit their declaration:

• auto lambda1 = [](){ return 17; }

• auto lambda2 = []{ return 17; }

• argument types can not be deduced:

• each type needs to be spelled out
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Capture

• only names from the local scope!

• specify storage of objects in the closure

• [] ⇒ no variables are to be captured

• [&] ⇒ default capture by reference

• [=] ⇒ default capture by value

• [&r, v] ⇒ r captured by reference, v by value
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Capture Example

int n{17}; string* s{new string};
auto a=[=]{ return n; };          // int n
auto b=[&]{ return n; };         // int& n
auto c=[=]{ return s->size(); }; // string* s 
n = 18; *s = “hello”;
int a_result{a()};   // -> 17
int b_result{b()};   // -> 18
auto c_result = c(); // -> 5
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Capture Concept

• captured variables are effectively a closure

• a lambda capturing any variables is like a 
function object with the variables as 
members

• capture specification: value/reference

• type of the members is deduced
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Mutable Closure

• by default the closure is constant:
int a{18};
auto lambda = [=]{ a = 17; }; <- ERROR

• closure can be made mutable:
int a{18};
auto lambda = [=]() mutable { a = 17; };

• not needed for reference capture [&]
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Lambda Details

• members cannot be captured

• the pointer this is captured

• the type of lambdas cannot be spelled out

• ... but they convert to function pointers if 
there is no closure:
int (*lambda)() = []{ return 17; };
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Range-Based For
• execute a block for all elements in a range

for (auto x: range)
    use(x);

• this is equivalent to
auto&& r{range};
for (auto b(begin(r)), e(end(r)); b != e; ++b) {
    auto x(*b); 
    use(x);
}
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Going Native 2012

• conference at Microsoft in February 2012

• recorded and available on the net

• http://channel9.msdn.com/Events/
GoingNative/GoingNative-2012
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Concurrency

• threads

• mutex, locks, and condition variable

• futures

• atomics

• thread safety
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Threads

• std::thread to kick off a thread

• detached to finish off at some point

• joinable to synchronise on results

• no support for thread pools, etc. (yet?)
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Create a Thread

#include <thread>
void entry(T0 arg0, T1 arg1);

void f(T0 arg0, T1 arg1) {
    std::thread thread{entry, arg0, arg1};
    ... // <- this is dangerous!
    thread.join();
}
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std::thread’s Destructor

• a std::thread is joinable() until

• join() is called to synchronise with it

• detach() is called to make it independent

• destroying a joinable() thread:

• calls std::terminate()
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Futures

• used to wait for results

std::vector<int> foo(int bar) {
    std::future<std::vector<int> > future
        = std::async(std::launch::async,
                       some_function, bar);
    do_work();
    return future.get();
}
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Promises

• std::future<T> objects may have other source

• std::promise<T> collects results from thread(s)

• std::future<T>::get() to access results

• one or more threads set the result

• ... which may be an exception
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Obtaining Exceptions

• std::exception_pointer to hold an exception

• std::current_exception() to get exception

• null if there is no current exception

• current exception or copy of it otherwise

• std::make_exception_ptr(e)

• std::rethrow_exception(ptr)
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Mutex

• synchronise access to shared data

• support lock(), try_lock(), unlock() operations

• std::mutex

• std::recursive_mutex

• std::timed_mutex

• std::recursive_timed_mutex

Tuesday, 8 May 12



Lock Objects

• std::lock_guard<Mutex> lock(mutex);

• acquire lock in ctor: mutex.lock()

• release lock in dtor: mutex.unlock()

• std::unique_lock<Mutex>

• allow later lock acquisition, try_lock(), ...

• support transfer of lock, etc.
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Condition Variables

• std::condition_variable

• requires std::unique_lock<std::mutex>

• most efficient

• std::condition_variable_any

• can be used with user-defined locks
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Waiting for Conditions

• cv.wait(lock): wait until notified

• cv.wait(lock, predicate): wait until notified 
(possibly multiple times) and predicate()

• cv.notify_one(): notify one waiting thread

• cv.notify_all(): notify all waiting threads
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Atomic Operations

• work only on a few basic types atomically

• atomic only for each individual object

• only synchronise access to this one object

• more expensive than normal data accesses

• ... but cheaper than full synchronisation

• ... on systems supporting atomic operations
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std::atomic<T>

• is_lock_free() to test if doesn’t use a lock

• store(T), load() to change/read the value

• compare_exchange_...(): various forms

• can also use assignment and conversion

• for integral types also integer operations

• function interface to ease C compatibility
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Thread-Safety

• standard classes are thread-safe:

• multiple concurrent readers

• one writer, no readers

• has to be guaranteed via external locks
(except for the synchronisation classes)

• applies to containers, streams, etc.
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Fire and Forget

• implicit locking has limited use

• only applicable to fire-and-forget interfaces:

• allocate memory, release memory

• push on/pop from queue

• ... and similar abstractions

• doesn’t work well with intermediate state
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Stream Objects

• std::cout, std::cin, etc. are not special

• don’t use them directly without locking

• typically accessed via some logging facility

• combines result of formatting operations

• makes the actual send atomic
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Library Enhancements

• general improvements of the library

• support for function objects

• smart pointers

• added containers
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Using the Language

• where possible, objects are moved

• appropriately defaulted or deleted functions

• take initialiser-lists where appropriate

• constructors objects in-place in containers

• functions are noexcept where appropriate
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Overall Library Policies

• allow const iterators for non-const objects

• allocators are cleaned up

• allocators are used consistently throughout
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std::function<Sig>

• function<R (T0, T1, T2)> f{x};

• holds an object callable with the signature

• accepts arguments of type T0, T1, T2

• result can be returned as R

• similar to R(*)(T0, T1, T2) with an object

• internally holds a polymorphic entity
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std::mem_fn()

• function object from member function

• first parameter is the object

• pointers or references can be used

• std::for_each(begin, end, mem_fn(&S::f));
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std::bind()

• binds function arguments to positions

• allows composition of function objects

• reference_wrapper for pass by reference

• references and pointers for members

• replaces bind1st, ptr_fun, mem_fun, ...
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bind() and Placeholders
#include <functional>
using namespace std::placeholders;
void f(int a, int b);
int main() {
  bind(f, _1, _2)(1, 2);
  bind(f, _2, _1)(1, 2);
  bind(f, _2, 3)(1, 2, 3, 4, 5);
  bind(f, _2, 3)(1); // placeholder index too big
  bind(f, _1)(1);    // too few arguments
}
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bind() and Composition

int g(int a);
void f(int b, int c);

int main() {
  bind(g, _1)(1);                      // g(1)
  bind(f, bind(g, _1), _2)(1, 2);  // f(g(1), 2);
  bind(f, bind(g, _1), _1)(1);     // f(g(1), 1);
}

Tuesday, 8 May 12



bind() and References

void f(int& r);

int main() {
  int v{0};
  bind(f, v)();         // ERROR: not a reference
  bind(f, ref(v))();  // OK
  bind(f, _1)(v);    // OK
}
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reference_wrapper<T>

• T x...; reference_wrapper<T> rw{x};

• implicitly converts to T& but is a value type

• if T is function, rw can be used as function

• ref(x)  → reference_wrapper<T>

• cref(x) → reference_wrapper<T const>

• for_each(begin, end, ref(x));
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Smart Pointers

• std::unique_ptr<T> moves ownership

• std::auto_ptr<T> is deprecated

• std::shared_ptr<T> reference counted

• std::weak_ptr<T> to break cycles

• std::exception_ptr for exception objects
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Added Containers

• note: “container” used here informally

• mandatory template arguments are marked

• std::array<T, N>

• std::forward_list<T, A>

• std::unordered_set<K, H, E, A>

• std::unordered_map<K, V, H, E, A>
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std::tuple<typename...>

• container for heterogenous elements

• like std::pair<T0, T1> but more general:

• there can be any number of elements

• reference members are supported

• elements are referred to by index
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Tuple Example

tuple<int, double, string> t{1, 3.14, “hello”};

int i{get<0>(t)}; double d{get<1>(t)}; string s;
get<0>(t) = i;

t = tuple<long, float, char const*>{2, 2.71, “x”};

tie(i, d, s) = make_tuple(3, 4.0, string(“y”));
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Lexicographic Compare

struct V { int i; double d; string s; };

bool operator< (V0 const& v0, V1 const& v1) {
   return tie(v0.i, v0.d, v0.s) < tie(v1.i, v1.d, v1.s);
}

• std::tuple<...> defines relational operators

• these can be used for other classes:
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Conclusions

• lots of new features

• C++ should be easier to use

• C++ has become more complex

• ... but should be easier to use
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