
C++ 2011
Dietmar Kühl
Bloomberg L.P.

Tuesday, 8 May 12

Copyright Notice

© 2012 Bloomberg L.P. Permission is granted to copy, distribute, and display this
material, and to make derivative works and commercial use of it. The information in
this material is provided "AS IS", without warranty of any kind. Neither Bloomberg
nor any employee guarantees the correctness or completeness of such information.
Bloomberg, its employees, and its affiliated entities and persons shall not be liable,
directly or indirectly, in any way, for any inaccuracies, errors or omissions in such
information. Nothing herein should be interpreted as stating the opinions, policies,
recommendations, or positions of Bloomberg.

Tuesday, 8 May 12

Overview

• C++ committee and its operation

• language improvements

• r-value references and move semantics

• auto, decltype, and lambda functions

• concurrency support

• library enhancements

Tuesday, 8 May 12

C++ 2011 Availability

• most compilers support some new features

• typically some compile-time flag is used:

• gcc: -std=c++11 <http://gcc.gnu.org/>

• clang: -std=c++11 <http://clang.llvm.org/>

• EDG: --c++0x

• MS VC++: enabled by default

Tuesday, 8 May 12

http://gcc.gnu.org
http://gcc.gnu.org
http://clang.llvm.org
http://clang.llvm.org

Language Improvements

• final/override, defaulted/deleted functions

• initialisation: uniform, in class definition, lists

• delegating constructors, explicit conversion

• nullptr, static assertion, constant expression

• strongly typed and forward declared enums

• integer types, string literals

Tuesday, 8 May 12

Stopping Inheritance

• prevent a class from being a base class:
struct not_a_base final { ... };

• final is part of the class definition

• prevent overriding of a virtual function:
struct base { virtual void f(); ... };
struct derived: base { void f() final; ... };

• final is not a keyword

Tuesday, 8 May 12

Overriding Functions

• catch mistakes when overriding functions

struct B { virtual void f(int); ... };
struct D1: B { void f(int) override; }; // OK
struct D2: B { void f(long) override; }; // error
struct D3: B { void f(long); //hiding intentional?

• override is not a keyword

Tuesday, 8 May 12

Defaulted Functions

• define a function like it would be generated

struct S {
 S();
 S(int); // => no implicit default constructor
 virtual S& operator=(S const&) = default;
};
S::S() = default; // non-inline definition

Tuesday, 8 May 12

Defaultable Functions

• default constructor: S::S()

• copy constructor: S::S(S cv&)

• move constructor: S::S(S&&)

• copy assignment: S::operator= (S cv&)

• move assignment: S::operator= (S&&)

• destructor: S::~S()

Tuesday, 8 May 12

Deleted Functions

• prevent use of functions:
struct B { void foo(); };
struct S: B {
 S(S const&) = delete;
 void operator= (S const&) = delete;
 void foo() = delete;
 void just_for_the_fun_of_it() = delete;
};
bool operator== (S, S) = delete;

Tuesday, 8 May 12

Uniform Initialisation

• Braces {} can be used for ctor arguments:

struct S { S(int i = 0): m{i} {} int m; };
void f() {
 S s0{};
 S s1{1};
};
struct A { A(): a{0, 1, 2, 3} {} int a[4]; };

Tuesday, 8 May 12

• narrowing conversion is an error, e.g.:
long l{17};
short s{2}; // ERROR: narrowing conversion

• doesn’t suffer from most vexing parse:
typedef istream_iterator<int> in_it;
vector<int> f(in_it(cin), in_it());
vector<int> v{in_it(cin), in_it()};

• f is a function, v is a vector<int>

Uniform Initialisation

Tuesday, 8 May 12

Initialiser Lists

• let functions take argument lists:

#include <initializer_list>
void f(std::initializer_list<int> list);
f({ 0, 1, 2, 3 });
std::vector<int> v{ 0, 1, 2, 3 };
std::list<int> l{ 0, 1, 2, 3 };

• std::initializer_list<T> is similar to container

Tuesday, 8 May 12

std::initializer_list<T>

• same type for different sizes (unlike arrays)

• all members are const and noexcept

• usual container typedefs:
value_type, reference, const_reference,
size_type, iterator, const_iterator

• default constructor

• begin(), end(), size()

Tuesday, 8 May 12

Member Initialisation

• members can be initialised where defined

• member initialiser list takes precedence

struct S {
 std::string s_ = “hello”;
 S() {} // s_ == “hello”
 S(std::string s): s_{s} {} // s_ == s
};

Tuesday, 8 May 12

Delegating Constructors

• constructors can delegate to others:

struct S {
 S(int i);
 S(std::string s): S{atoi(s.c_str()} {}
 S(): S{“17”} {} // yes, a bit silly...
};

Tuesday, 8 May 12

Inheriting Constructors

• ctors can be inherited from the direct base

• the class can still add members and ctors
struct B { B(int); B(std::string); ... };
struct D: B {
 using B::B;
 D(): B{17}, v_(0) {}
 int v_ = 1;
};

Tuesday, 8 May 12

Explicit Conversion

• conversion operators can be made explicit
struct some_ptr {
 explicit operator bool() const;
 ...
};
some_ptr p = ...;
if (p) ... // OK: explicitly bool
int v(p << 3); // no implicit conversion

Tuesday, 8 May 12

Null Pointer

• nullptr converts only to pointer types

• nullptr is a keyword

• will become the spelling for null pointers

• nullptr_t defined in <cstddef>

int* p = nullptr;

Tuesday, 8 May 12

Static Assert

• produce conditional compile-time errors

• condition is a constant expression

• most useful in template code

• useful to detect restrictions early on

static_assert(sizeof(int) < sizeof(long),
 “int isn’t big enough”);

Tuesday, 8 May 12

Constant Expressions

• constant expressions extended to functions

• have to be declared as constexpr

• only one statement: a return

• can only use constant expressions

• arguments CEs => result CE

• definition has to be visible at point of use

Tuesday, 8 May 12

Constexpr Function

enum BM { a = 0x01, b = 0x02 };
BM constexpr operator| (BM x, BM y) {
 return BM(int{x} | int{y});
}
void something(BM x) {
 BM y = a | b;
 switch (x) { case a | b: ...; }
}

Tuesday, 8 May 12

Constexpr Value

• values can be constant expressions
struct S {
 static int constexpr iv = 17;
 static double constexpr dv = 3.14;
};

• requires initialization (unlike const)

• requires a definition when address is used

Tuesday, 8 May 12

Constexpr Constructor

• objects of user type can be constexpr
struct S {
 constexpr S(int v): v_{v} {}
 int v_;
};
S constexpr o(17);
enum { value = o.v_ };

Tuesday, 8 May 12

Strongly Typed Enums

• enums have loads of problems:

• they litter the enclosing namespace

• implicitly convert to integer types

• use an unpredictable underlying type

• the fix: strongly typed enums

Tuesday, 8 May 12

Strongly Typed Enums

• declaration:
enum class E { v1, v2, v3 };
enum class F: int { v1, v2, v3 };

• no implicit conversion to integers

• values need qualification, e.g. E::v1 or F::v1

• the underlying integral type can be chosen
(it is an error if the values don’t fit)

Tuesday, 8 May 12

Half-Hearted Enums

• for legacy uses strong enums may not work

• a migration path is supported, however:

• the underlying integral type can be chosen

• the scoped names work for all enums

• nothing else changes

Tuesday, 8 May 12

Forward Declare Enums

• enums can be forward declared

• requires the underlying type:
enum class E: int;
E e_val{17};
enum class E: int { e1, e2 };

• works with strong and legacy enums

Tuesday, 8 May 12

Integral Types

• 64 bit integers: long long/unsigned long long

• more character types (we had only 4):

• UTF-16 encoded: char16_t

• UTF-32 encoded: char32_t

• <uchar.h>, <uchar> for some functions

Tuesday, 8 May 12

Character Types

Type encoding char string class

char ? ‘a’ “a” string

char UTF-8 - u8”a” string

wchar_t ? L’a’ L”a” wstring

char16_t UTF-16 u’a’ u”a” c16string

char32_t UTF-32 U’a’ U”a” c32string

Tuesday, 8 May 12

Raw String Literals

• all string literals have a “raw” version

• inside the raw literal no escapes matter

• start and end use same delimiter:
R”abc(content)abc” - abc is the delimiter
R”(content)” - no delimiter

Tuesday, 8 May 12

R-Value References

• references to objects about to disappear

• move construction and moving objects

• using moves vs. exceptions

Tuesday, 8 May 12

First: L-Values

• l-values are objects you can refer to

• anything which has a name
(including its aliases i.e. references)

• objects being pointed to

• l-values may be const or volatile

• not all objects are l-values

Tuesday, 8 May 12

Not L-Values

• unnamed temporary objects are not l-values

• any unnamed object created

• the object returned from a function

• intermediate objects in an expression

• about to disappear when getting hold of them

Tuesday, 8 May 12

R-Value References

• T&& x is an r-value reference for type T

• r-value references can only bind to r-values

• the object is about to go away

• x has name

• .. and hence x binds to l-value references!

Tuesday, 8 May 12

Move Construction

• consider the constructor: T(T&& obj)

• the referenced object is about to go away

• it is safe to move its state to *this

• ... and leave obj in a destructible state

• ... which doesn’t release anything

Tuesday, 8 May 12

Move Example

struct S {
 S(int i): p_{new int{i}} {}
 S(S&& other): p_{other.p_} { other.p_ = 0; }
 ~S() { delete this->p_; }
 ...
private:
 int* p_;
};

Tuesday, 8 May 12

Overload Resolution

Overload l-value const l-value r-value

T x = ...;
f(x);

T const x = ...;
f(x);

f(T{...});

f(T&)

f(T const&)

f(T&& x)

preferred never never

OK OK OK

never never preferred

Tuesday, 8 May 12

Move Constructor Use

T f() { return T{}; } // move construction
T g() { T x{ ... }; return x; } // move construction

void h() {
 T r{f()}; // move construction
}

(at least conceptually - probably elided, though)

Tuesday, 8 May 12

std::move()

• std::move() allows moving l-values

• std::move() doesn’t actually move

• creates r-value reference for r- and l-values

• returning an l-value from a function:

T x = ...; T y = ...;
return std::move(cond? x: y);

Tuesday, 8 May 12

std::move() Caveat

• std::move(x) promises that x isn’t used again

• x is about to be destroyed or

• x is about to be assigned to

• either way its state can be moved

• lying about this may be fatal

• thus: use std::move(x) carefully!

Tuesday, 8 May 12

Move Assignment
struct S {
 S(S&& o): p_{o.p_} { o.p_ = 0; }
 S& operator= (S&& o) {
 delete this->p_;
 this->p_ = o.p_; o.p_ = 0; return *this;
 }
 ...
private:
 int* p_;
};

Tuesday, 8 May 12

Moving Objects

• e.g. make/fill space in a std::vector<T>:

for (; i != v.size(); ++i)
 v[i - 1] = std::move(v[i]);

• uses move assignment

• std::move(begin, end, to) does this

• but what happens if moving throws?

Tuesday, 8 May 12

Move vs. Copy

• moving or copying resources may fail

• copying objects often supports roll-back

• moving objects doesn’t support roll-back:
the moved from objects are unusable

• only non-throwing move instead of copy

• in most cases move doesn’t throw

Tuesday, 8 May 12

Moving vs. Exceptions

• moving is an optimisation in many places

• copying yields strong exception guarantee

• moving needs has to give same guarantee

• necessary to tell if something might throw

• need to declare if something might throw

Tuesday, 8 May 12

noexcept Declaration

• mark that a function never throws, e.g.:
void f() noexcept;

• optionally uses a bool constant expression:
void f() noexcept(true); // never throws
void g() noexcept(false); // might throw
void h() noexcept(sizeof(int) <= 2);

• similar to throw() but no run-time overhead

Tuesday, 8 May 12

noexcept Expression

• test if an expression will never throw e.g.
if (noexcept(f())) ...

• this is a constant expression

• the argument is not evaluated

• tests if the overall expression might throw

• this includes “invisible” operations (e.g.
construction/destruction of temporaries)

Tuesday, 8 May 12

noexcept Expression

• consider noexcept(T{std::move(x)})

• x won’t throw

• std::move(x) is declared be noexcept

• T{...} actually does two things:

• (move?) constructs a T object

• destroys the T object just created

Tuesday, 8 May 12

noexcept Example

template <typename T>
void swap(T& t0, T& t1)
 noexcept(noexcept(T{std::move(t0)})
 && noexcept(t0 = std::move(t1))) {
 T tmp{std::move(t0)};
 t0 = std::move(t1);
 t1 = std::move(tmp);
}

Tuesday, 8 May 12

noexcept Caveats

• noexcept is not statically enforced

• noexcept function throws => terminate

• similar to using throw()

• no guarantee on stack unwinding

• destructors implicitly become noexcept!

• throwing dtor needs noexcept(false)

Tuesday, 8 May 12

Uses of Moving

• for non-copyable or expensive to copy types

• putting objects into containers

• returning objects

• passing objects around

• optimising reorganisations (when noexcept)

Tuesday, 8 May 12

Generated Move

• move operation may be compiler generated

• if no user defined copy, dtor, or move

• if all the members are movable

• user implementation can use = default
(if all members are movable)

• generated operations move all subobjects

Tuesday, 8 May 12

Automatic Types

• deduce types of initialised variables:
auto var1(some_expression);
auto var2 = some_expression;

• breaks some existing code:
auto int i;
auto int j(17);

• the fix: remove auto or the type

Tuesday, 8 May 12

Automatic Types

• can be used where defining a variable

• cannot be used for members or arguments

• derived types can be deduced, too:
auto x = 17;
auto const& c = 17;
auto* p = &c;

• same rules as for template arguments

Tuesday, 8 May 12

Type Deduction

auto auto& auto const& auto&&

S x;
... a = x;

S const c;
... a = c;

... a= S{};

S S S S&

S error S S const&

S error S S

Tuesday, 8 May 12

Type of Expression

• decltype(expression)

• can be used anywhere a type can be used

• does not evaluate the expression

• yields the exact type of the expression

• use type traits to manipulate the type

Tuesday, 8 May 12

Type Traits

• compile-time inspection of types

• declared in <type_traits>

• made accessible via a library interface

• various Boolean values to check properties

• various type transformation

• used e.g. to improve algorithm behaviour

Tuesday, 8 May 12

Example Type Traits

is_abstract is_integral is_enum

is_object is_fundamental is_trivial

is_constructible is_polymorphic is_class

is_destructible is_copy_constructible is_pod

is_base_of has_virtual_destructor is_same

remove_const add_lvalue_reference make_signed

Tuesday, 8 May 12

decltype Examples
typedef decltype(0) int_type;
decltype(‘c’) f();

struct S { decltype(f()) m_; };

std::vector<decltype(f())> v(10, f());

// below doest not work (x isn’t declared, yet):
template <typename T>
decltype(x * x) g(T x) { return x * x; }

Tuesday, 8 May 12

Function Declaration

• alternate function declaration syntax:
auto name(type arg) -> result;

• auto main(int ac, char* av[]) -> int { ... }

• template <typename T>
auto square(T x) -> decltype(x * x) { ... }

Tuesday, 8 May 12

Lambda Functions

• [capture](arguments) mutable -> type { ... }

• capture: how are variables referenced

• opt: arguments: normal argument declaration

• opt: mutable: can mutate captured variables?

• opt: type of the result

Tuesday, 8 May 12

Lambda Example

std::string v("hello, world");
std::transform(v.begin(), v.end(), v.begin(),
 [](unsigned char c){ return toupper(c); });

Tuesday, 8 May 12

Return Type

• defined using new style syntax

• the return type can be omitted sometimes:

• if there is no return statement ⇒ void

• if there is one return only ⇒ deduced

• otherwise return needs to be specified

Tuesday, 8 May 12

Lambda Arguments

• no arguments ⇒ can omit their declaration:

• auto lambda1 = [](){ return 17; }

• auto lambda2 = []{ return 17; }

• argument types can not be deduced:

• each type needs to be spelled out

Tuesday, 8 May 12

Capture

• only names from the local scope!

• specify storage of objects in the closure

• [] ⇒ no variables are to be captured

• [&] ⇒ default capture by reference

• [=] ⇒ default capture by value

• [&r, v] ⇒ r captured by reference, v by value

Tuesday, 8 May 12

Capture Example

int n{17}; string* s{new string};
auto a=[=]{ return n; }; // int n
auto b=[&]{ return n; }; // int& n
auto c=[=]{ return s->size(); }; // string* s
n = 18; *s = “hello”;
int a_result{a()}; // -> 17
int b_result{b()}; // -> 18
auto c_result = c(); // -> 5

Tuesday, 8 May 12

Capture Concept

• captured variables are effectively a closure

• a lambda capturing any variables is like a
function object with the variables as
members

• capture specification: value/reference

• type of the members is deduced

Tuesday, 8 May 12

Mutable Closure

• by default the closure is constant:
int a{18};
auto lambda = [=]{ a = 17; }; <- ERROR

• closure can be made mutable:
int a{18};
auto lambda = [=]() mutable { a = 17; };

• not needed for reference capture [&]

Tuesday, 8 May 12

Lambda Details

• members cannot be captured

• the pointer this is captured

• the type of lambdas cannot be spelled out

• ... but they convert to function pointers if
there is no closure:
int (*lambda)() = []{ return 17; };

Tuesday, 8 May 12

Range-Based For
• execute a block for all elements in a range

for (auto x: range)
 use(x);

• this is equivalent to
auto&& r{range};
for (auto b(begin(r)), e(end(r)); b != e; ++b) {
 auto x(*b);
 use(x);
}

Tuesday, 8 May 12

Going Native 2012

• conference at Microsoft in February 2012

• recorded and available on the net

• http://channel9.msdn.com/Events/
GoingNative/GoingNative-2012

Tuesday, 8 May 12

Concurrency

• threads

• mutex, locks, and condition variable

• futures

• atomics

• thread safety

Tuesday, 8 May 12

Threads

• std::thread to kick off a thread

• detached to finish off at some point

• joinable to synchronise on results

• no support for thread pools, etc. (yet?)

Tuesday, 8 May 12

Create a Thread

#include <thread>
void entry(T0 arg0, T1 arg1);

void f(T0 arg0, T1 arg1) {
 std::thread thread{entry, arg0, arg1};
 ... // <- this is dangerous!
 thread.join();
}

Tuesday, 8 May 12

std::thread’s Destructor

• a std::thread is joinable() until

• join() is called to synchronise with it

• detach() is called to make it independent

• destroying a joinable() thread:

• calls std::terminate()

Tuesday, 8 May 12

Futures

• used to wait for results

std::vector<int> foo(int bar) {
 std::future<std::vector<int> > future
 = std::async(std::launch::async,
 some_function, bar);
 do_work();
 return future.get();
}

Tuesday, 8 May 12

Promises

• std::future<T> objects may have other source

• std::promise<T> collects results from thread(s)

• std::future<T>::get() to access results

• one or more threads set the result

• ... which may be an exception

Tuesday, 8 May 12

Obtaining Exceptions

• std::exception_pointer to hold an exception

• std::current_exception() to get exception

• null if there is no current exception

• current exception or copy of it otherwise

• std::make_exception_ptr(e)

• std::rethrow_exception(ptr)

Tuesday, 8 May 12

Mutex

• synchronise access to shared data

• support lock(), try_lock(), unlock() operations

• std::mutex

• std::recursive_mutex

• std::timed_mutex

• std::recursive_timed_mutex

Tuesday, 8 May 12

Lock Objects

• std::lock_guard<Mutex> lock(mutex);

• acquire lock in ctor: mutex.lock()

• release lock in dtor: mutex.unlock()

• std::unique_lock<Mutex>

• allow later lock acquisition, try_lock(), ...

• support transfer of lock, etc.

Tuesday, 8 May 12

Condition Variables

• std::condition_variable

• requires std::unique_lock<std::mutex>

• most efficient

• std::condition_variable_any

• can be used with user-defined locks

Tuesday, 8 May 12

Waiting for Conditions

• cv.wait(lock): wait until notified

• cv.wait(lock, predicate): wait until notified
(possibly multiple times) and predicate()

• cv.notify_one(): notify one waiting thread

• cv.notify_all(): notify all waiting threads

Tuesday, 8 May 12

Atomic Operations

• work only on a few basic types atomically

• atomic only for each individual object

• only synchronise access to this one object

• more expensive than normal data accesses

• ... but cheaper than full synchronisation

• ... on systems supporting atomic operations

Tuesday, 8 May 12

std::atomic<T>

• is_lock_free() to test if doesn’t use a lock

• store(T), load() to change/read the value

• compare_exchange_...(): various forms

• can also use assignment and conversion

• for integral types also integer operations

• function interface to ease C compatibility

Tuesday, 8 May 12

Thread-Safety

• standard classes are thread-safe:

• multiple concurrent readers

• one writer, no readers

• has to be guaranteed via external locks
(except for the synchronisation classes)

• applies to containers, streams, etc.

Tuesday, 8 May 12

Fire and Forget

• implicit locking has limited use

• only applicable to fire-and-forget interfaces:

• allocate memory, release memory

• push on/pop from queue

• ... and similar abstractions

• doesn’t work well with intermediate state

Tuesday, 8 May 12

Stream Objects

• std::cout, std::cin, etc. are not special

• don’t use them directly without locking

• typically accessed via some logging facility

• combines result of formatting operations

• makes the actual send atomic

Tuesday, 8 May 12

Library Enhancements

• general improvements of the library

• support for function objects

• smart pointers

• added containers

Tuesday, 8 May 12

Using the Language

• where possible, objects are moved

• appropriately defaulted or deleted functions

• take initialiser-lists where appropriate

• constructors objects in-place in containers

• functions are noexcept where appropriate

Tuesday, 8 May 12

Overall Library Policies

• allow const iterators for non-const objects

• allocators are cleaned up

• allocators are used consistently throughout

Tuesday, 8 May 12

std::function<Sig>

• function<R (T0, T1, T2)> f{x};

• holds an object callable with the signature

• accepts arguments of type T0, T1, T2

• result can be returned as R

• similar to R(*)(T0, T1, T2) with an object

• internally holds a polymorphic entity

Tuesday, 8 May 12

std::mem_fn()

• function object from member function

• first parameter is the object

• pointers or references can be used

• std::for_each(begin, end, mem_fn(&S::f));

Tuesday, 8 May 12

std::bind()

• binds function arguments to positions

• allows composition of function objects

• reference_wrapper for pass by reference

• references and pointers for members

• replaces bind1st, ptr_fun, mem_fun, ...

Tuesday, 8 May 12

bind() and Placeholders
#include <functional>
using namespace std::placeholders;
void f(int a, int b);
int main() {
 bind(f, _1, _2)(1, 2);
 bind(f, _2, _1)(1, 2);
 bind(f, _2, 3)(1, 2, 3, 4, 5);
 bind(f, _2, 3)(1); // placeholder index too big
 bind(f, _1)(1); // too few arguments
}

Tuesday, 8 May 12

bind() and Composition

int g(int a);
void f(int b, int c);

int main() {
 bind(g, _1)(1); // g(1)
 bind(f, bind(g, _1), _2)(1, 2); // f(g(1), 2);
 bind(f, bind(g, _1), _1)(1); // f(g(1), 1);
}

Tuesday, 8 May 12

bind() and References

void f(int& r);

int main() {
 int v{0};
 bind(f, v)(); // ERROR: not a reference
 bind(f, ref(v))(); // OK
 bind(f, _1)(v); // OK
}

Tuesday, 8 May 12

reference_wrapper<T>

• T x...; reference_wrapper<T> rw{x};

• implicitly converts to T& but is a value type

• if T is function, rw can be used as function

• ref(x) → reference_wrapper<T>

• cref(x) → reference_wrapper<T const>

• for_each(begin, end, ref(x));

Tuesday, 8 May 12

Smart Pointers

• std::unique_ptr<T> moves ownership

• std::auto_ptr<T> is deprecated

• std::shared_ptr<T> reference counted

• std::weak_ptr<T> to break cycles

• std::exception_ptr for exception objects

Tuesday, 8 May 12

Added Containers

• note: “container” used here informally

• mandatory template arguments are marked

• std::array<T, N>

• std::forward_list<T, A>

• std::unordered_set<K, H, E, A>

• std::unordered_map<K, V, H, E, A>

Tuesday, 8 May 12

std::tuple<typename...>

• container for heterogenous elements

• like std::pair<T0, T1> but more general:

• there can be any number of elements

• reference members are supported

• elements are referred to by index

Tuesday, 8 May 12

Tuple Example

tuple<int, double, string> t{1, 3.14, “hello”};

int i{get<0>(t)}; double d{get<1>(t)}; string s;
get<0>(t) = i;

t = tuple<long, float, char const*>{2, 2.71, “x”};

tie(i, d, s) = make_tuple(3, 4.0, string(“y”));

Tuesday, 8 May 12

Lexicographic Compare

struct V { int i; double d; string s; };

bool operator< (V0 const& v0, V1 const& v1) {
 return tie(v0.i, v0.d, v0.s) < tie(v1.i, v1.d, v1.s);
}

• std::tuple<...> defines relational operators

• these can be used for other classes:

Tuesday, 8 May 12

Conclusions

• lots of new features

• C++ should be easier to use

• C++ has become more complex

• ... but should be easier to use

Tuesday, 8 May 12

