
Importance of Early Bug Detection
for Improving Program Reliability
and Reducing Development Costs

Sergey Ignatchenko

Disclaimer

➲ All data and especially opinions within this
presentation represent an inherently
subjective point of view and should be taken
internally only with a pinch of salt. Your
mileage may vary.

Bugs, bugs, bugs...

Imagine if every Thursday your shoes exploded if
you tied them the usual way. This happens to us
all the time with computers, and nobody thinks of
complaining.

-- Jeff Raskin --

Bug Life Cycle

➲ Bug mysteriously emerges...
➲ Bug goes through compiler
➲ Bug makes it through linker
➲ Bug is not detected during unit-test
➲ Bug survives integration test
➲ Bug further survives system test
➲ Bug is deployed
➲ Bug is reported
➲ Bug is reproduced
➲ Bug is identified
➲ Bug is fixed

How Does Time Necessary to
Identify Bug Depend on the Stage

When It Is Detected

Compile Time Link Time Unit Test Integration
Test

System Test Deployed,
occurs every
10 sec

Deployed,
occurs every
hour

Deployed,
occurs every
day

Deployed,
occurs every
month

0

200

400

600

800

1000

1200

1400

1600

0.01 0.05 0.25 1 4 8 16 48

200

1 2 4 16 24 48
96

200

1600

Min
MaxH

ou
rs

Especially Nasty Bugs

➲ Multithreading Bugs (easy to make, difficult
to reproduce)

➲ Security Bugs (nobody cares to report)

➲ 3rd-party Bugs (nobody expects them there)

Nothing Too New...

The more bug is allowed to live, the more
damage it makes:

➲ Decreases program reliability
➲ Decreases customer satisfaction
➲ Increases development/maintenance costs

Existing Solutions

➲ Production-mode logging and reporting

➲ Asserts

➲ Self-restricting techniques like 'const'

➲ Static code analysis/LINT

Existing Solution: Production Mode
Logging and Reporting

➲ Trivial to implement (reporting can be tricky for
client-side or standalone apps, but logging is still
trivial)

➲ Can be implemented regardless of programming
language used

➲ Comprehensive logging enables post-mortem
analysis

➲ Exceptions e-mailed to developers can be a bit
too much, but it helps to reduce number of bugs
fairly quickly, and often allows to fix the bug even
before somebody complains.

Existing Solutions: asserts

➲ Extremely helpful not only to detect that
there is a bug, but also to identify it

➲ The most convenient in C/C++, but can be
used in other languages too

➲ Cannot have too many asserts
➲ Contrary to popular belief, in C/C++ it is

often useful to leave some asserts even in
production mode

➲ Close cousins: checked builds, debug-mode
libraries, and tools like Valgrind.

Existing Solutions: const, private,
etc.

➲ Compile-time detection (as early as it gets)
➲ As they don't change generated binary in

any way, it is essentially a tool which helps
programmer to protect himself from his own
mistakes

➲ Availability depends on language, but most
modern languages support similar concepts
one way or another

Existing Solutions: static code
analysis/LINT

➲ LINT itself is a C/C++ tool, but there are
similar tools for static code analysis for
other languages

➲ Compile-time detection (as early as it gets)
➲ Detects “suspicious” constructs which

definition is vague, and varies from project
to project

➲ Usually tuning it for your project takes some
time, but it is still worth it.

Static Code Analysis: what we
would like to be detected?

Example 1:
void f(const char* src) {
 char buf[32];
 strncpy(buf, src, 64);
}

Static Code Analysis: what we
would like to be detected?

Example 2:
struct X {
 string a; string b; int c; string long_text;
 bool operator < (const X& other) {
 if (a != other.a) return a < other.a;
 if (b != other.b) return b < other.b;
 if (c != other.c) return c < other.c;
 return true; // we don't care what to return
 // if all of (a,b,c) are the same
 }
};
set< X > set_of_x;

Static Code Analysis: what we
would like to be detected?

Example 2:
struct X {
 string a; string b; int c; string long_text;
 bool operator < (const X& other) {
 if (a != other.a) return a < other.a;
 if (b != other.b) return b < other.b;
 if (c != other.c) return c < other.c;
 return true; // bug!!
 }
};
set< X > set_of_x;

Static Code Analysis: what we
would like to be detected?

Example 3:
struct X {
 Mutex mx;
 string s; // all access should be protected
 // by mutex mx
 };

void f(X& x) {
 // Lock lock (mx); // erroneously omitted
 string tmp = x.s; // problem: we're
 // accessing s without lock
 }

Static Code Analysis: we would like
to detect it, but can we?

Bad: neither compiler nor LINT can
understand the comment below:

 string s; // all access should be protected
 // by mutex mx

Good: we can make it. Sort of.

Static Code Analysis: C+-

C+-:
➲ Soon to be released as an open source
➲ Extensible language with DIY extensions
➲ Compiles into C/C++ code (in the future –

also in Java)
➲ Some extensions can be “restrictive”
➲ One of extensions we already have is

@protected_by extension.

Static Code Analysis: Example 3
revisited

Example 3 in C+-:
struct X {
 Mutex mx;
 string s @protected_by(mx);
 };

void f(X& x) {
 // Lock lock (mx); // erroneously omitted
 string tmp = x.s;// compiler generates error
 // because of protected_by
 // specification
 }

C+-: Other Extensions
➲ Already has an extension to enforce safe

parameters for “printf”
➲ Also as an extension to prevent buffer

overflows in functions like strncpy()
(Example 1)

➲ Should be rather easy to add more
extensions

➲ We hope that open source community will
contribute many extensions (including those
aimed to enforce certain safe practices).

➲ In any case, use of all extensions is
optional.

Advanced Static Analysis: an
Important Tool in Early Bug

Detection
➲ In general, may need extending language to

allow specifying certain concepts explicitly.
➲ Can help detect certain classes of bugs as

early as it gets (compile-time).
➲ Has a big potential of improving of overall

quality of code.

Computers can't do anything smart
for you, but they can do a lot of

stupid work instead of you,
freeing you time to do something

smart.

	Title
	Disclaimer
	Bugs, bugs, bugs...
	Bug Life Cycle
	How Does Time Necessary to Identify Bug Depend on the Stage When It Is Detected
	Especially Nasty Bugs
	Nothing Too New...
	Existing Solutions
	Existing Solution: Production Mode Logging and Reporting
	Existing Solutions: asserts
	Existing Solutions: const, private, etc.
	Existing Solutions: LINT
	Static Code Analysis, Example 1
	Static Code Analysis: Example 2
	Static Code Analysis, Example 2 (continued)
	Static Code Analysis, Example 3
	Static Code Analysis: we would like to detect it, but can we?
	Static Code Analysis: C+-
	Static Code Analysis: Example 3 revisited
	C+-: other extensions
	Advanced Static Analysis: an Important Tool in Early Bug Detection
	Computers can't do anything smart for you, but they can do a lot of stupid work instead of you, freeing you time to do something smart.

