
Atomics in C++0x

Copyright © 2010 Detlef Vollmann

Atomics in C++0x

ACCU Conference 2010
Detlef Vollmann

Atomics in C++0x

Detlef Vollmann
Siemens Building Technologies

Zug, Switzerland

eMail: dv@vollmann.ch

Atomics in C++0x Copyright © 2010 Detlef Vollmann 3

Disclaimer
� This is for (concurrency) experts only and some features

are deliberately ugly to scare non-experts off.

� If you use anything presented here and cause damage,
it's your own fault!

� This will present atomics, not lock-free algorithms.

� You will even see some assembler here.

Atomics in C++0x Copyright © 2010 Detlef Vollmann 4

From the Standard (FCD)
� �This Clause describes components for fine-grained

atomic access. This access is provided via operations on
atomic objects.341�

� �341Atomic objects are neither active nor radioactive.�

Atomics in C++0x Copyright © 2010 Detlef Vollmann 5

From Hans' and Paul's C++0x FAQ
� When should I use low level atomic operations?

� You shouldn't unless both:
� The alternatives lead to inadequate performance, and you've

determined that high level atomics are the problem, and

� you sufficiently understand the relevant memory ordering issues,
something that is generally well beyond this FAQ.

� Generally low level atomic operations are intended for
implementors of a few other performance critical
libraries.

� We expect that in some cases coding standards will
prohibit the use of low level atomic operations.

Atomics in C++0x Copyright © 2010 Detlef Vollmann 6

What is "atomic"?
� From wiktionary:

� "Unable to be split or made any smaller."

Atomics in C++0x

Copyright © 2010 Detlef Vollmann

Atomics in C++0x Copyright © 2010 Detlef Vollmann 7

Atomic Increment
� Which one is atomic:
 addi #1,%r0
� or
1: ldarx r1,0,%r0
 addi r1,r1,1
 stdcx r1,0,%r0
 bne 1
� or
void atomic_inc_32(volatile uint32_t *addr) {
uint32_t old, new;
do {

old = *addr;
new = old + 1;

} while (atomic_cas_32(addr, old, new) != old);
}

Atomics in C++0x Copyright © 2010 Detlef Vollmann 8

What is atomic?
� From wiktionary:

� "Said of an operation that is guaranteed to either
complete fully, or not at all."

� So an atomic operation is a transaction.

Atomics in C++0x Copyright © 2010 Detlef Vollmann 9

Singleton
Precious* Precious::Instance() {
 lock_guard<mutex> lock(mtx); // lock
 if (!pInstance) {
 pInstance = new Precious;
 }
 return pInstance;
} // unlock

� Each access aquires the lock.

� This costs something.

� Some "experts" believe they can do better...

Atomics in C++0x Copyright © 2010 Detlef Vollmann 10

Double-Checked Locking (DCL)
class Precious {
 volatile Precious *pInstance;
public:
 Precious *Instance() {
 if (!pInstance) {
 lock_guard<mutex> lock(mtx); // lock
 if (!pInstance) {
 pInstance = new Precious;
 } // unlock
 }
 return pInstance;
 }
};

Atomics in C++0x Copyright © 2010 Detlef Vollmann 11

Double-Checked
� It's clever and ... unsafe.

� See the "Double-Checked Locking is Broken"
Declaration, available at
http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html.

Atomics in C++0x Copyright © 2010 Detlef Vollmann 12

Scott Meyer's Analysis of Double-
Checked Locking (DCL)

Atomics in C++0x

Copyright © 2010 Detlef Vollmann

Atomics in C++0x Copyright © 2010 Detlef Vollmann 13

Analysis of Double-Checked Locking (DCL)

� Scott was essentially right.

� Third problem: Hardware Instruction Re-Ordering

� Atomics are here to solve them all!

� Really?

Atomics in C++0x Copyright © 2010 Detlef Vollmann 14

Compiler Optimization
� From ISO/IEC JTC1 SC22 WG21 N2427, "C++ Atomic Types

and Operations� by Hans Boehm and Lawrence Crowl:

� "We propose to add atomic types and operations purely as a
library API. In practice, for C++, this API would have to bethis API would have to bethis API would have to bethis API would have to be
implemented largely with either compiler implemented largely with either compiler implemented largely with either compiler implemented largely with either compiler intrinsicsintrinsicsintrinsicsintrinsics or or or or
assembly code.assembly code.assembly code.assembly code. (As such, this proposal should be
implemented by compiler vendors, not library vendors, much as
the exception facilities are implemented by compiler vendors.) For
C, a compiler implementation is required for the type-generic
macros."

� Atomics are here to inhibit unwanted compiler
optimizations.

Atomics in C++0x Copyright © 2010 Detlef Vollmann 15

Hardware Instruction Re-Ordering
� From a PopwerPC manual

(MPC885 PowerQUICC(TM) Family Reference Manual):
� "The isync instruction is context synchronizing, which

guarantees that all of the effects of previousguarantees that all of the effects of previousguarantees that all of the effects of previousguarantees that all of the effects of previous
instructions are in place and any instructions in theinstructions are in place and any instructions in theinstructions are in place and any instructions in theinstructions are in place and any instructions in the
instruction queue are flushedinstruction queue are flushedinstruction queue are flushedinstruction queue are flushed (which means all instructions
that were in the instruction queue need to be refetched)."

� "The sync instruction delays execution of subsequent instructions
until previous instructions have completed to the point that they
can no longer cause an exception and until all previous memory
accesses are performed globally; the sync operation is not
broadcast onto the MPC885 bus interface. Additionally, allAdditionally, allAdditionally, allAdditionally, all
load and store cache/bus activities initiated by priorload and store cache/bus activities initiated by priorload and store cache/bus activities initiated by priorload and store cache/bus activities initiated by prior
instructions are completed.instructions are completed.instructions are completed.instructions are completed."

Atomics in C++0x Copyright © 2010 Detlef Vollmann 16

Memory Coherency

Atomics in C++0x Copyright © 2010 Detlef Vollmann 17

MemoryCPU

Multi-Core Memory Hierarchy

� Multiple complete CPUs inside one package
� single or multiple die

� Caches might be shared or separate

� Communication between cores (caches) might be
internal or external

L2
 C

ac
he

Core

In
st

r.
C

ac
he

D
at

a
C

ac
he

L3
 C

ac
he

Core

In
st

r.
C

ac
he

D
at

a
C

ac
he

R
eg

is
te

rs
R

eg
is

te
rs

Swap

Atomics in C++0x Copyright © 2010 Detlef Vollmann 18

MemoryCPU

ca
ch

es

MemoryCPU

ca
ch

es

NUMA

� Non-Uniform Memory Access

� Single address space

� Access to remote memory via other CPU

� ccNUMA: cache coherent NUMA

Atomics in C++0x

Copyright © 2010 Detlef Vollmann

Atomics in C++0x Copyright © 2010 Detlef Vollmann 19

Memory Coherence
� Data written to cache might not be seen by another core

for some time.

� Writes from cache to memory are often in different order
than writes from core to cache.

� Processor architectures provide specific mechanisms to
control when data is seen by other devices (cores or
DMA devices).

Atomics in C++0x Copyright © 2010 Detlef Vollmann 20

Double-Checked Locking (DCL)
Precious* Precious::Instance() {
 if (!pInstance) {
 lock_guard<mutex> lock(mtx); // lock
 if (!pInstance) {
 pInstance = new Precious;
//pInstance might be published before ctor finished
 } // unlock
 }
 return pInstance;
}

Atomics in C++0x Copyright © 2010 Detlef Vollmann 21

What is "atomic"?
� The atomic operations in C++ are actually about

control of ordering:
� instruction reordering by compiler

� instruction reordering by processor

� memory ordering in common memory

� They are also atomic in the sense of "transactional".

Atomics in C++0x Copyright © 2010 Detlef Vollmann 22

Atomic Operations
� C++ provides classes for atomic integral types (and

pointers), e.g.:
struct atomic_int {
public:
 int fetch_add(int operand, memory_order order =
memory_order_seq_cst) volatile;

 int operator++(int) volatile;
 int operator++() volatile;

 // ...
};
� With the semantic definition:

int operator++(int) volatile;
Returns: fetch_add(1)

Atomics in C++0x Copyright © 2010 Detlef Vollmann 23

Atomic Operations
� Specification for fetch_add:

� Effects:

� Atomically replaces the value pointed to by this with the
result of addition applied to the value pointed to by
this and the given operand.

� Memory is affected according to the value of order.

� These operations are atomic read-modify-write
operations (1.10).

Atomics in C++0x Copyright © 2010 Detlef Vollmann 24

Memory Order Values
typedef enum memory_order {
 memory_order_relaxed,
 memory_order_consume,
 memory_order_acquire,
 memory_order_release,
 memory_order_acq_rel,
 memory_order_seq_cst
} memory_order;

Atomics in C++0x

Copyright © 2010 Detlef Vollmann

Atomics in C++0x Copyright © 2010 Detlef Vollmann 25

memory_order_relaxed
� No memory ordering.

� "atomic" as "transactional"

� Implementation on PowerPC:
a.fetch_add(i, memory_order_relaxed):
1: lwarx %0,0,%2
 add %0,%0,%3
 stwcx %0,0,%2
 bne 1b

%0: tmp
%2: &a.value
%3: i

Atomics in C++0x Copyright © 2010 Detlef Vollmann 26

lwarx and stwcx
� Load Word and Reserve Indexed

� Store Word Conditional Indexed

� From PowerPC manual:

"The concept behind the use of the lwarxlwarxlwarxlwarx and stwcxstwcxstwcxstwcx
instructions is that a processor may load a semaphoreload a semaphoreload a semaphoreload a semaphore
from memoryfrom memoryfrom memoryfrom memory, compute a result based on the value of the
semaphore, and conditionally store it back to the sameconditionally store it back to the sameconditionally store it back to the sameconditionally store it back to the same
location (only if that location has not been modifiedlocation (only if that location has not been modifiedlocation (only if that location has not been modifiedlocation (only if that location has not been modified
since it was first read)since it was first read)since it was first read)since it was first read), and determine if the store wasdetermine if the store wasdetermine if the store wasdetermine if the store was
successful.successful.successful.successful.

Atomics in C++0x Copyright © 2010 Detlef Vollmann 27

lwarx and stwcx
The conditional store is performed based upon the existence
of a reservation established by the preceding lwarxlwarxlwarxlwarx
instruction.

If the reservation exists when the store is executed,
the store is performed and a bit is set in the CR. If the
reservation does not exist when the store is executed,
the target memory location is not modified and a bit
is cleared in the CR.

Atomics in C++0x Copyright © 2010 Detlef Vollmann 28

 lwarx and stwcx
If the store was successful, the sequence of
instructions from the read of the semaphore to the
store that updated the semaphore appear to have
been executed atomically (that is, no other processor
or mechanism modified the semaphore location
between the read and the update), thus providing the
equivalent of a real atomic operation. However, in
reality, other processors may have read from the
location during this operation.

Atomics in C++0x Copyright © 2010 Detlef Vollmann 29

 lwarx and stwcx
In the MPC885, the reservations are made on behalf of
aligned 16-byte sections of the memory address space.
The lwarxlwarxlwarxlwarx and stwcxstwcxstwcxstwcx instructions require the EA to be
aligned. Exception handling software should not attempt to
emulate a misaligned lwarxlwarxlwarxlwarx or stwcxstwcxstwcxstwcx instruction, because
there is no correct way to define the address associated with
the reservation.

In general, the lwarxlwarxlwarxlwarx and stwcxstwcxstwcxstwcx instructions should be
used only in system programs, which can be invoked
by application programs as needed.

Atomics in C++0x Copyright © 2010 Detlef Vollmann 30

lwarx and stwcx
At most, one reservation exists simultaneously on any
processor. The address associated with the reservation can
be changed by a subsequent lwarxlwarxlwarxlwarx instruction. The
conditional store is performed based upon the existence of a
reservation established by the preceding lwarxlwarxlwarxlwarx, regardless of
whether the address generated by the lwarxlwarxlwarxlwarx matches that
generated by the stwcxstwcxstwcxstwcx instruction.

A reservation held by the processor is cleared by one
of the following:
� Executing an stwcxstwcxstwcxstwcx instruction to any address

� Attempt by another device to modify a location in the
reservation granularity (16 bytes)"

-- end quote

Atomics in C++0x

Copyright © 2010 Detlef Vollmann

Atomics in C++0x Copyright © 2010 Detlef Vollmann 31

memory_order_relaxed
 // Initialization:
 atomic<int> x(0), y(0);
 int r1, r2;

// Thread 1:
 r1 = y.load(memory_order_relaxed);
 x.store(r1, memory_order_relaxed);

// Thread 2:
 r2 = x.load(memory_order_relaxed);
 y.store(42, memory_order_relaxed); (1)

(2)
(3)

(4)

 Result: r1 = r2 = 42.

Atomics in C++0x Copyright © 2010 Detlef Vollmann 32

memory_order_consume
� "don't move any subsequent 'dependent' memory load

before this operation"

� Some implementations implement this by just doing a
memory_order_aquire.

Atomics in C++0x Copyright © 2010 Detlef Vollmann 33

memory_order_acquire
� also RMB: read memory barrier

� "don't move any subsequent load before this barrier"

� or

� "invalidate any cache locations that are read after this"

� This should be done if you enter some synchronized
section.

Atomics in C++0x Copyright © 2010 Detlef Vollmann 34

memory_order_release
� also WMB: write memory barrier

� "don't move any previous store after this barrier"

� or

� "publish everything that's done until now"

� This should be done on leaving some synchronized
section.

Atomics in C++0x Copyright © 2010 Detlef Vollmann 35

memory_order_acq_rel
� Full memory barrier: both, read and write memory

barrier.

� "Don't move any memory access across this barrier."

Atomics in C++0x Copyright © 2010 Detlef Vollmann 36

memory_order_seq_cst
� Sequential consistency:

� "Don't move any instructions."

� This is about hardware instruction reordering.
� and full memory ordering.

� This is pretty safe.
� ... and it�s the default.

� And as Bartosz Milewski says:
"Any time you deviate from sequential consistency, you
increase the complexity of the problem by orders of
magnitude."

http://bartoszmilewski.wordpress.com/2008/12/01/c-atomics-and-memory-ordering/

Atomics in C++0x

Copyright © 2010 Detlef Vollmann

Atomics in C++0x Copyright © 2010 Detlef Vollmann 37

Double-Checked Locking (DCL)
class Precious {
 volatile Precious * pInstance;
public
 Precious* Instance() {
 if (!pInstance) {
 lock_guard<mutex> lock(mtx); // lock
 if (!pInstance) {
 pInstance = new Precious;

 } // unlock
 }
 return pInstance;
 }
};

pInstance might be published before ctor writes

Atomics in C++0x Copyright © 2010 Detlef Vollmann 38

DCL with atomics
class Precious {

public
 Precious* Instance() {
 if (!pInstance) {
 lock_guard<mutex> lock(mtx); // lock
 if (!pInstance) {
 pInstance = new Precious;
 } // unlock
 }
 return pInstance;
 }
};

 atomic<Precious *> pInstance; volatile Precious * pInstance;

� This (probably) works fine ... and is probably slow.

Atomics in C++0x Copyright © 2010 Detlef Vollmann 39

Fast DCL with atomics
class Precious {
 atomic<Precious *> pInstance;
public
 Precious* Instance() {
 if (!pInstance.load(memory_order_consume)) {
 lock_guard<mutex> lock(mtx);
 if (!pInstance.load(memory_order_relaxed) {
 pInstance.store(new Precious,
 memory_order_release);

 }
 }
 return pInstance;
 }
};

Atomics in C++0x Copyright © 2010 Detlef Vollmann 40

Fast DCL with atomics
� This might be pretty fast.

� ... and it might even work.

� ... but don't trust me!

Atomics in C++0x Copyright © 2010 Detlef Vollmann 41

DCL Performance
� From PowerPC manual:

� "The functions performed by the sync instruction normally
take a significant amount of time to complete; as a
result, frequent use of this instruction may adversely
affect performance."

Atomics in C++0x Copyright © 2010 Detlef Vollmann 42

Standard Locking Performance
� A good mutex (futex) implementation uses user-space

atomic operations

� only for the non-contention case.

� Faster than safe version of DCL with atomics.

� Safer than fast version of DCL with atomics.

Atomics in C++0x

Copyright © 2010 Detlef Vollmann

Atomics in C++0x Copyright © 2010 Detlef Vollmann 43

When To Use atomics?
� When you're an expert.

� When you need lock-free behaviour.

� E.g. interrupt service routines.

Atomics in C++0x Copyright © 2010 Detlef Vollmann 44

Atomic Operations
� struct atomic_flag:

� bool test_and_set(memory_order)
� sets the flag, returns old value

� void clear(memory_order)
� clears the flag

� no load()!

Atomics in C++0x Copyright © 2010 Detlef Vollmann 45

atomic<int> Operations
� Actually for all integer types.

� atomic(int): non atomic

� store/load
� operator int(): atomic conversion (load)

� operator=(): just a seq_cst store

� exchange(new_value, order): returns old value

� fetch_add, fetch_sub, fetch_and, fetch_or,
fetch_xor: returns old value

� +=, -=, &=, |=, ^=: return new value

� ++, --
Atomics in C++0x Copyright © 2010 Detlef Vollmann 46

Compare And Swap
� bool compare_exchange_weak(
 int &expected,
 int desired,
 memory_order success,
 memory_order failure);

� bool compare_exchange_strong(...)

 if (*this == expected) {
 store(desired, success);
 return true;
 } else {
 expected = load(failure)
 return false;
 }
� The weak version may fail spuriously.

Atomics in C++0x Copyright © 2010 Detlef Vollmann 47

atomic<T *> Operations
� like atomic<int>
� but no fetch_and/or/xor
� no operators * or []

Atomics in C++0x Copyright © 2010 Detlef Vollmann 48

ABA Problem
� CAS principle:

� load old value

� prepare new data based on old value

� run compare_exchange with old value as expected

⇒ if we still find the old value, nothing has changed

� Wrong!

� Another thread might have changed it twice, to another
value and back.

� This might or might not be a problem.

� Workaround: use a two-word compare_exchange
with an additional counter

Atomics in C++0x

Copyright © 2010 Detlef Vollmann

Atomics in C++0x Copyright © 2010 Detlef Vollmann 49

atomic<T> Operations
� For any trivially copyable types.

� is_lock_free()
� atomic(T): non atomic

� store/load
� operator T(): atomic conversion (load)

� operator=(): just a seq_cst store

� exchange, fcompare_exchange

Atomics in C++0x Copyright © 2010 Detlef Vollmann 50

Fences
� void atomic_thread_fence(memory_order order);

� void atomic_signal_fence(memory_order order);
� Effects:

equivalent to atomic_thread_fence(order),
except that synchronizes with relationships are
established only between a thread and a signal handler
executed in the same thread.

Atomics in C++0x Copyright © 2010 Detlef Vollmann 51

References
� Programming Languages - C++, FCD
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3092.pdf

� ISO/IEC JTC1 SC22 WG21 N2427: "C++ Atomic Types
and Operations" by Hans Boehm and Lawrence Crowl

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2427.html

� Paul E. McKenney: "Memory Ordering in Modern
Microprocessors"

http://www.rdrop.com/users/paulmck/scalability/paper/ordering.2007.09.19a.pdf

� Hans Boehm, Paul McKenney:
"Programming with Threads: Questions Frequently Asked by
C and C++ Programmers"

http://www.rdrop.com/users/paulmck/scalability/paper/c++0x_user_faq.html

Atomics in C++0x Copyright © 2010 Detlef Vollmann 52

References
� Bartosz Milewski: "C++ atomics and memory ordering"
http://bartoszmilewski.wordpress.com/2008/12/01/c-atomics-and-memory-ordering/

� "Double-Checked Locking is Broken Declaration"
http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

� Scott Meyers: "Double-Checked Locking, Threads, C++
Compiler Optimizations, and More"

Presentation at ACCU Conference 2006

� Freescale: "MPC885 PowerQUICC� Family Reference
Manual"

