
Message-Passing Concurrency in Erlang

Erlang Training and Consulting Ltd

ACCU, Oxford, April 14th, 2010

Ulf Wiger
ulf.wiger@erlang-solutions.com
@uwiger

The (original) Problem

Copyright 2008 – Erlang Training and Consulting Ltd

Agent-based service...

Copyright 2008 – Erlang Training and Consulting Ltd

25-lines switchboard, Natal Province, South Africa 1897

Cross-switchboard calls required human interaction.

Scalability – Resource Partitioning...

Copyright 2008 – Erlang Training and Consulting Ltd

SAT’s main telephone exchange, Stockholm 1897 – 7000 lines

”Multiple switchboard” – each operator could work independently.

Automatic Switching – Machine-driven

Copyright 2008 – Erlang Training and Consulting Ltd

Ericsson’s 500 Switch 1940s – 500 lines per stage

Stored Program Control – Bugs and all!!!

Copyright 2008 – Erlang Training and Consulting Ltd

Ericsson’s AKE12 Switch 1968 –

Computerized Electromagnetic code switching

Consequences of Software Control

� More complex services become possible
� Call waiting, Call forwarding

� Call pickup groups, toll-free numbers

� Conference calls on demand

� ...

Copyright 2008 – Erlang Training and Consulting Ltd

� New hairy problem: Feature interaction

� Higher line density calls for higher reliability

� Language designed by committee, CCITT CHILL (1980),

was supposed to address the important problems

� Ericsson designed PLEX, PL163, EriPascal, High-Level PLEX, ...

Digital switching, modular SW design

Copyright 2008 – Erlang Training and Consulting Ltd

Ericsson’s AXE10 Switch 1975 – High-Level Language (PLEX)

Ericsson’s PLEX Language

� “Blocks” with signal interfaces

� No shared data

� Fail-fast programming & layered restarts

� Redundant (lock-step) Control Processors

Copyright 2008 – Erlang Training and Consulting Ltd

� Redundant (lock-step) Control Processors

� Very, very proprietary

� Lacks selective message reception

� Very difficult to extend to multi-processor

Checkpoint

� 1958: First phone call completed using SPC technology
LISP

� 1965: Edsger Dijkstra - the first mutual exclusion algorithm

� 1970-72: Ericsson drafts the AXE/PLEX design

Copyright 2008 – Erlang Training and Consulting Ltd

� 1970-72: Ericsson drafts the AXE/PLEX design

� 1978: C.A.R. Hoare publishes CSP book

Niklaus Wirth creates Modula-2

� 1982: Lamport et al describe The Byzantine Generals Problem

� 1981-1987: SPOTS Experiments ���� Erlang

� 1991: Erlang publicly announced

The forming of Ericsson CSLab 1980

• Small group of people
• Bjarne Däcker

• Göran Båge

• Seved Torstendahl

• Mike Williams

Copyright 2008 – Erlang Training and Consulting Ltd

• Systematic treatment of

Computer Science

• Highly experimental,

literally a ”laboratory”CSLab plan 1981 (Bjarne Däcker)

Language Experiments

• SPOTS (SPC for POTS)

• Wrote control system in

several languages
• Ada, CHILL, CCS, LPL, Concurrent

http://video.google.com/videoplay?docid=-5830318882717959520#

Copyright 2008 – Erlang Training and Consulting Ltd

• Ada, CHILL, CCS, LPL, Concurrent
Euclid, Frames, CLU, OPS4

• Domain experience

identified the tricky

problems

• Led to yet a new language:

Erlang

Properties of Erlang

� Telecom goodness:
� Scalable agent-style concurrency

� Distribution transparency

� Fail-fast programming style

� Managing complexity

Copyright 2008 – Erlang Training and Consulting Ltd

� Managing complexity
� Declarative/functional programming inside each process

� No shared data, loosely coupled components (black-box style design)

� ”Programming for the correct case”

� Evolving systems
� In-service upgrades

� (Dynamic typing)

Erlang was never about speed

� Writing software that is
� Complex

� Distributed

� Evolving

� Fault-tolerant

Copyright 2008 – Erlang Training and Consulting Ltd

� However...

Multicore ☺ Message-passing Concurrency

Big_bang benchmark, 500 processes chatting

Bound schedulers

Default (unbound)

(No Tilera-specific optimizations!)

Erlang/OTP R13B on Tilera Pro 64-core

Copyright 2008 – Erlang Training and Consulting Ltd

Program for the correct case - Patterns

factorial(N) when is_integer(N), N > 0 ->

N * factorial(N-1);

factorial(0) ->

1.

area({square , Side}) -> Side * Side;

Copyright 2008 – Erlang Training and Consulting Ltd

� Describe the expected – crash on erroneous input

� Infrastructure handles recovery

area({square , Side}) -> Side * Side;

area({rectangle, B, H}) -> B * H;

area({triangle , B, H}) -> B * H / 2.

Erlang Concurrency

-module(my_server).

-export([start_server/2, call/2]).

start_server(F, St0) ->

spawn_link(fun() ->

St = F(init, St0),

server_loop(F, St)

end).

Observation: From can refer

to a remote process

(distribution transparency)

Copyright 2008 – Erlang Training and Consulting Ltd

end).

call(Server, Req) ->

Ref = erlang:monitor(process, Server),

Server ! {call, self(), Ref, Req},

receive

{Ref, Reply} -> Reply;

{‘DOWN’,Ref,_,_,Reason} -> erlang:error(Reason)

after 5000 ->

erlang:error(timeout)

end.

Selective receive

Erlang Concurrency, cont...

server_loop(F, St) ->

receive

{call, From, Ref, Req} ->

{Reply, NewSt} = F({call, Req}, St),

From ! {Ref, Reply},

server_loop(F, NewSt);

Copyright 2008 – Erlang Training and Consulting Ltd

server_loop(F, NewSt);

_ -> server_loop(F, St)

end.

Parameterizing our server

-module(counter).

-export([new/1, inc/2]).

new(InitialValue) ->

my_server:start_server(fun counter:main/2, InitialValue).

inc(Counter, Value) ->

Copyright 2008 – Erlang Training and Consulting Ltd

inc(Counter, Value) ->

my_server:call(Counter, {inc, Value}).

main(init, Initial) ->

Initial;

main({call, {inc, V}}, N) ->

N1 = N + V,

{N1, N1}.

Running it from the interactive shell

Eshell V5.7.2 (abort with ^G)

1> c(my_server).

{ok,my_server}

2> c(counter).

{ok,counter}

3> C = counter:new(0).

<0.44.0>

4> counter:inc(C,1).

1

6> counter:inc(C,5).

Copyright 2008 – Erlang Training and Consulting Ltd

6> counter:inc(C,5).

6

7> counter:inc(C,-2).

4

8> counter:inc(C,foo).

=ERROR REPORT==== 6-Nov-2009::08:23:21 ===

Error in process <0.44.0> with exit value: ...

** exception exit: badarith

in function counter:counter/2

in call from my_server:server_loop/2

Scalability in the Cloud?

� You just saw it!

� Lightweight processes

� Distribution transparency

� Asynchronous message passing

Distributor

...

Copyright 2008 – Erlang Training and Consulting Ltd

� Asynchronous message passing

� Monitoring and recovery/re-routing

...

Global Name Server

2. whereis(Name)
P

3. P ! Msg

1. register(Name, self())

The “Always Copy” Illusion

� Conceptually, messages are always copied

� A necessity in the distributed case

� Under the hood, data may be passed by reference
� “copy on write”

Copyright 2008 – Erlang Training and Consulting Ltd

� “copy on write”

� Per-process garbage collection

� Transparent to the program

� No explicit sharing!

Erlang as (Distributed) System Glue

� A “port” to the outside world looks like

a process to Erlang

DLL

C code as a linked-in driver

Copyright 2008 – Erlang Training and Consulting Ltd

External

code

DLL

NIF

C code wrapped as an

Erlang module

Port process, via pipe or socket

Supervisors – Out-of-Band Error Handling

One-for-one

One-for-all Escalation

Copyright 2008 – Erlang Training and Consulting Ltd

� Robust systems can be built

using layering

� Program for the correct case

One-for-one

Rest-for-one

Handling sockets in Erlang

Static process opens
listen socket

1

Spawns an acceptor
process

2

Acceptor receives
incoming

3

accept()

Copyright 2008 – Erlang Training and Consulting Ltd

incoming

Acks back to socket
owner

4

New acceptor is
spawned

5

Replies sent directly to
socket

6

listen()

Middle-man Processes

spawn_link(PidA, PidB) ->

spawn_link(fun() ->

loop(#state{a_pid= PidA,

b_pid = PidB})

end).

PidA MM PidB
XML Int.

await_negotiation(State) ->

receive

{From,

{simple_xml,

[{"offer", Attrs, Content}]}} ->

HisOffer =

inspect_offer(Attrs, Content),

Offer = calc_offer(HisOffer, State),

From ! {self(), Offer};

…

end.

Copyright 2008 – Erlang Training and Consulting Ltd

� Practical because of

light-weight concurrency

� Normalizes messages

� Main process can pattern-

match on messages

� Keeps the main logic clear

PidA MM PidB
XML Int.

loop(#state{a_pid = PidA, b_pid = PidB} = State) ->

receive

{PidA, MsgBin} when is_binary(MsgBin) ->

{simple_xml, _} = Msg = vccXml:simple_xml(MsgBin),

PidB ! {self(), Msg},

loop(State);

{PidB, {simple_xml, _} = Msg} ->

Bin = vccXml:to_XML(Msg),

PidA ! {self(), Bin},

loop(State)

end.

MMMM
MM

Erlang Bends Your Mind...

� Processes are cheap and plentiful!
� When you need a process – just create one!

� Don’t ration processes – use exactly as many as you need

� No need for thread pools – reusing processes is really a pain!

� Message-passing is cheap!

Copyright 2008 – Erlang Training and Consulting Ltd

� Message-passing is cheap!
� Use processes to separate concerns

� Middle-man processes useful for transforming data

� Processes can monitor each other
� Enables out-of-band error handling

� Use Concurrency as a Modelling Paradigm!

Language Model Affects our Thinking

state event action next state

...

I-Open Send-Message I-Snd-Message I-Open

I-Rcv-Message Process I-Open

I-Rcv-DWR Process-DWR, I-Open

I-Snd-DWA

I-Rcv-DWA Process-DWA I-Open

R-Conn-CER R-Reject I-Open

Example: RFC 3588 – DIAMETER Base Protocol

Transport FSM

Copyright 2008 – Erlang Training and Consulting Ltd

� Three state machines described as one

� Implies a single-threaded event loop

� Introduces accidental complexity

R-Conn-CER R-Reject I-Open

Stop I-Snd-DPR Closing

... Handshake FSM

ServerServer

Use processes to separate concerns

AAA

Hand-

shake

Handshake FSM

• Capabilities exchange

• Leader election

• Only active during handshake

Server

Dynamic request handler

• One per request

Copyright 2008 – Erlang Training and Consulting Ltd

ClientClient

AAA

Transport FSM

• Handles heartbeat

logic (RFC 3539)

Service

Service FSM

•Request routing

•Failover

•Retransmission

Client

Closing words

� Poor concurrency models can lead to complexity explosion

� Much accidental complexity is often viewed as a given

� Event-based programming is the new GOTO

Copyright 2008 – Erlang Training and Consulting Ltd

� Message passing Concurrency is a powerful structuring model

� Fault handling is an oft overlooked

aspect of Erlang-style Concurrency

Photos from http://www.ericssonhistory.com

