
Page: 158

Bernhard Merkle

Research & Development

Software-Engineering

SICK-AG Waldkirch/DE
mailto: Bernhard.Merkle@gmail.com

contact on linkedin.com or xing.com

FindBugs



Page: 159

Overview:

Levels of Static Analysis

– Code, Design, Architectural

Code/Design Analysis

– FindBugs: overview, examples

– Rules: Effective Java, custom FB rule

– Checkstyle, PMD

Architectural Analysis

– FindBugs evolution

– Tool Support, examples

Summary



Page: 160

Possible levels of Static Analysis:

Goal: find, avoid Problems, Increase QA (and measure it)

Micro-Level

– Code

– e.g: =, ==, { }, 

Macro-Level

– Class-Design

– e.g: by reference, String concat, Exception-Handling

Architecture-Level:

– Layers, Graphs, Subsystems, Compoments, Interfaces

– e.g: Coupling, Dependency, etc…

Tool-support for each level…



Page: 161

Micro-Level / Code:

Language itself

– Appendix F/ANSI or G/ISO

• Unspecified behavior

• Undefined behavior

• Implementation-defined behavior

• Locale-specific behavior

Usage of Language

– Misplacement

– Omission and Addition

– Unexpected behavior

– Complexity



Page: 162

Macro-Level: Design + Coding Guidelines



Page: 163

Java: findbugs



Page: 164

C++: VisualLint, Integrations of…



Page: 165

C#: FxCop (Microsoft)



Page: 166

Static Analysis

Analyzes your program without executing it

Doesn’t depend on having good test cases

– or even any test cases

Doesn’t know what your software is supposed to do 

– (In general) 

– Looks for violations of reasonable programming

– Shouldn’t throw NPE

– Shouldn’t allow SQL injection

Not a replacement for testing

– Very good at finding problems on untested paths

– But many defects can’t be found with static analysis



Page: 167

Static Analysis

Pros/Cons:

– can help improve code quality

– but lots of improvement still possible and need

– Getting to the point where it really helps

FindBugs as example here:

– Commercial: lint, coverity, QA/C/C++, fortify, CodeTest etc)

– Free: PMD, etc.

Not a stylechecker

– Checkstyle, IDE, astyle



Page: 168

if (in == null)

try {

in.close ();

…

}

Eclipse 3.0.0. M8

What is lurcking in your code ?

Findbugs is looking for simple, stupid bugs



Page: 169

if (listeners == null)

listeners.remove(listener )
;

sun.awt.x11.XMSelection

JDK1.6.0, b105



Page: 170

public String foundType () {

return this.foundType ();

}

j.l.annotation.AnnotationTypeMismatchException

JDK1.6.0, b13

Bug by Josh Bloch, author of Effective Java



Page: 171

FindBugs:

features:

– GUI (swing,eclipse,netbeans)

– Commandline, buildserver

– Bytecode-level static analysis

– XML-based format for saved warnings

• Handling multiple versions of software

• Tracking warnings over time

focus developing new analyses, empirical studies, etc.

Large user base: test your idea works in the “real world”



Page: 172



Page: 173



Page: 174



Page: 175

No silver bullets

Static analysis…

– won’t ensure your code is correct or of high quality

Other techniques (more?) valuable

– careful design

– Testing

– Code review



Page: 176

Skim the cream

Find more/faster issues comp. testing

Should be part of your development proc

Integrate in buildserver

Established: look a new+high prio issues



Page: 177

Bug Categroies and Bug Patterns

Bug Categories 

Bug Patterns



Page: 178

Bug Categories

– Correctness 

– Bad practice

– Dodgy code

– Multithreaded correctness

– Potential performance problems

– Malicious code vulnerability



Page: 179

Bug Patterns

Some big, broad and common patterns

– Dereferencing a null pointer

– An impossible checked cast

– Methods whose return value should not be ignored

Lots of small, specific bug patterns, 

that together find lots of bugs

– Every Programming Puzzler

– Every chapter in Effective Java



Page: 180

Analysis Techniques

Local pattern matching

– String.toLowerCase(), don’t ignore the return value

Intraprocedural dataflow analysis

– Null pointer, type cast errors

Interprocedural method summaries

– E.g. method always dereferences its parameter

Context sensitive interprocedural analysis

– Interprocedural flow of untrusted data, injection



Page: 181

Categories, ranking, use cases:

customize what you want to look at

audit of a newly written module with 1,000 lines of code

scan 1,000,000 lines of “legacy” code

use cases require different tunings



Page: 182

Infinite recursive loop

Typical bug for CS students

/** Construct a WebSpider */

public WebSpider () {

w = new WebSpider ();

}

Okay this is (silly) student stuff…



Page: 183

Number of infinite recursive loops

5 infinite recursive loops in JDK

27 across all versions of JDK,

40+ in Google’s Java code

??? in Eclipse code

??? in your code

org.netbeans.modules.web.monitor.client.MonitorAction

public static void log(String s) {

log ( “MonitorAction :: ” +s)

}



Page: 184

Examples of null pointer bugs

//com.sun.corba.se.impl.naming.cosnaming.NamingContextImpl

if (name != null || name.length > 0)

//com.sun.xml.internal.ws.wsdl.parser.RuntimeWSDLParser

if (part == null | part.equals (""))

// sun.awt.x11.ScrollPanePeer

if (g != null)

paintScrollBars(g,colors );

g.dispose ();



Page: 185

Redundant Check For Null

Checking a value to see if it is null When it can't be null

// java.awt.image.LoopupOp, lines 236-247

public final WritableRaster filter(

Raster src, WritableRaster dst) {

int dstLength = dst.getNumBands();

// Create a new destination Raster,

// if needed

if (dst == null)



Page: 186

Bad Method Invocation

Methods whose return value shouldn't be ignored

– Strings are immutable, so functions like trim() 

and toLowerCase() return new String

Lots of specific rules about particular API methods

– Hard to memorize, easy to get wrong



Page: 187

Examples of bad method calls

// com.sun.rowset.CachedRowSetImpl

if (type == Types.DECIMAL || type == Types.NUMERIC)

((java.math.BigDecimal)x).setScale(scale);

// com.sun.xml.internal.txw2.output.XMLWriter

try { ... }

catch (IOException e) {

new SAXException("Server side Exception:" + e);

}



Page: 188

More results:

Glassfish

– 29 ignored return values

– 59 classes with equals() but not hashCode()

– 9 calls to equals will always return false

– 18 statement + 98 branches with NPE

– 10 methods with IRL

Weblogic

– 1166 ignored return values

– 254 classes with equals() but not hashCode()

– 45 calls to equals will always return false

– 35 statement + 98 branches with NPE

– 21 methods with IRL



Page: 189

ACCU

– mentored developer list 

– Effective Java

– (Effective C++)

– (Design Patterns)



Page: 190

3 Methods Common to All Objects

– Item 8: Obey the general contract when overriding equals

– Item 9: Always override hashCode when you override equals

– Item 10: Always override toString

– Item 11: Override clone judiciously

– Item 12: Consider implementing Comparable



Page: 191

Item 8: Obey contract overriding equals

easiest way to avoid problems is:
– not to override equals

right thing to do if any of the following conditions apply:
– Each instance of the class is inherently unique (no value)

• Thread

– don’t care whether class provides a “logical equality” test
• java.util.Random

– A superclass has already overridden equals, 
&& the superclass behavior is appropriate for this class.

• Set impls inherit equals from AbstractSet
(dito List, Map)



Page: 192

Item 8: Obey contract overriding equals

right thing to do if any of the following conditions apply:

– class is private or package-private, and you are certain that 
its equals method will never be invoked

• Really certain ? 

@Override public boolean equals(Object o) {
// Method is never called

throw new AssertionError(); 
}



Page: 193

Item 8: Obey contract overriding equals

When to override Object.equals () ?

– logical equality that differs from mere object identity

– Value classes (Integer, Date, etc)

– must adhere to its general contract for Object [JavaSE6]:

The equals method implements an equivalence relation.

• Reflexive:

• Symmetric:

• Transitive:

• Consistent: multiple invocations of x.equals(y) return same value

• For any non-null reference value x, x.equals(null) must return false.



Page: 194

Item 8: Obey contract overriding equals

a recipe for a high-quality equals() method:
– Use == operator to check if argument is a reference to this 

object

• If so, return true . Performance optimization

– Use the instanceof operator to check if the argument has the 
correct type

• If not, return false .

– Cast the argument to the correct type

– For each “significant” field in the class, check matches

• For primitive fields, use == operator

• For object reference fields, use equals ()

• For float/double use Float/Double.compare()
• Arrays.equals

– Watch out for null
(field == null ? o.field == null : 

field.equals(o.field))



Page: 195

Item 8: Obey contract overriding equals

Caveat when overriding equals() method

– Always override hashCode when override equals (Item 9).

– Don’t try to be too clever 

• If you are overly aggressive in searching for equivalence, 

it’s easy to get into trouble. E.g. aliasing))

– Don’t substitute another type for Object in the equals 

declaration (override vs. overload)

//MyClass.class

public boolean equals(MyClass o) {

...

}

� Consistent use of the @Override annotation



Page: 196

Test Item 8 with real code

Equal objects must have equal hash codes

– Fail: override equals() but not hashCode() 

(or other way around)

– Object violating the contract won’t work in 

hash table, maps, set, etc

– Examples: (53 bugs in JDK 1.6.0)

– java.awt.geom.Area

– javax.management.Attribute



Page: 197

4 Classes and Interfaces 

– Item 13: Minimize the accessibility of classes and members

– Item 14: In public classes, use accessor methods,not public fields

– Item 15: Minimize mutability

– Item 16: Favor composition over inheritance

– Item 17: Design and document for inheritance or else prohibit it

– Item 18: Prefer interfaces to abstract classes

– Item 19: Use interfaces only to define types

– Item 20: Prefer class hierarchies to tagged classes

– Item 21: Use function objects to represent strategies

– Item 22: Favor static member classes over nonstatic



Page: 198

Item 13: min accessibility of classes/members

well-designed module ?

– decouples the modules that comprise a system,

– increases software reuse

Java access modifiers

– For top-level (non-nested) classes and interfaces:

• package-private
• public

– For members (fields, methods, nested classes, and nested 
interfaces),

• private
• package-private
• protected
• public



Page: 199

Item 13: min accessibility of classes/members

Rule: always use lowest access level 

– consider nested If only used by one other class

– private fields leak into API if class implements Serializable

– protected member is part of exported API, must be supported

Instance fields should never be public

– give up the ability to limit the values that can be stored

– no enforcing of invariants

– no control over time of modification (� thread unsafe !)

– no switch to a new internal data representation



Page: 200

Item 13: min accessibility of classes/members

public static fields ?
– Same as public instance fields. But make them final
– fields should be primitive value or reference to immutable

// Potential security hole! Client/content
public static final Thing[] VALUES = { ... };

// Fix ?
private static final Thing[] PRIVATE_VALUES = { ...  };

public static final List<Thing> VALUES =
Collections. unmodifiableList (Arrays.asList(PRIVATE_VALUES

));

public static final Thing[] values()
{return PRIVATE_VALUES. clone() ;}



Page: 201

When Bad Code Isn't A Bug



Page: 202

When Bad Code Isn't A Bug

// com.sun.jndi.dns.DnsName, lines 345-347
if (n instanceof CompositeName) {

// force ClassCastException
n = (DnsName) n;

}

// com.sun.corba.se.impl.dynamicany.DynAnyComplexImpl
String expectedMemberName = null;
try {

expectedMemberName = 
expectedTypeCode.member_name(i);

} catch (BadKind badKind) { // impossible
} catch (Bounds bounds) { // impossible
}
if ( !(expectedMemberName.equals(memberName) ... ))
{



Page: 203

Other Categories

Bad practice

Dodgy code

Multithreaded correctness

Performance

Vulnerability to malicious code



Page: 204

Bad Practice

A class that defines an equals method but inherits

hashCode from Object

equals method doesn't handle null argument

Serializable class without a serialVersionUID

Exception caught and ignored

Broken out from the correctness category because I 

never want a developer to yawn when I show them a 

"correctness" bug



Page: 205

Dodgy code

Dead local store - a value is stored into a local variable, 

but that value is never used

Use of non-short circuit boolean logic

Switch statement fallthrough

Branch where code on both branches is identical



Page: 206

Multithreaded correctness

Inconsistent synchronization - a lock is held most of the 

time a field is accessed, but not always

Problems with wait/notify - e.g., call to wait() not in loop

thread unsafe lazy initialization of static field



Page: 207

Performance

Unused field

Invocation of Boolean or Integer constructors

Using hashCode or equals method on a URL

final constant field that could be made static

Loop with quadratic string concatenation

Inner class that could be made static



Page: 208

Vunerability to Malicious code

public static non-final fields

public static final fields that reference mutable objects

Methods that don’t defensively copy mutable 

arguments before storing them into fields

Methods that don’t defensively copy mutable values 

stored in fields before returning them



Page: 209

Confusing/bad naming

– Maybe more a “style” issue ?

– Methods with identical names and signatures

• But different capitalization of names

• Override in subclass really ? Overload ?

– Method name same as class name

– � resolved by Java5 @Overrides annotation



Page: 210

Bad naming in Eclipse

package org.eclipse.jface.dialogs;

public abstract class Dialog extends Window {

protected Button getOKButton () {

….

}

public class InputDialog extends Dialog {

protected Button getOkButton() {

….

}



Page: 211

Bad naming in BCEL

public int hashcode() {

return basic_type.hashCode();

}



Page: 212

Read Return Value ignored

– InputStream.read()

– � read into a byte array, return number of bytes read

– Can be less than number requested

– Programmers sometimes fail to check return value

– Example: of GNU Class path XXX todo



Page: 213

Return Value ingored: e.g. immutable Classes

Operations on immutable objects

// Eclipse 3.0.0M8

String name workingCopy.getName();

Name.replace(‘/’, ‘.’);

Or example: 

– create Thread and do NOT start it

– Create Exception but do NOT throw it 

(also in eclipse)



Page: 214

Inconsistent Synchronisation

– Common idiom for thread safe classes is to sync on the 

receiver object (“this”)

– Findbugs checks for field access

• Find classes, where lock on “this” is not always (only sometimes)

• Unsnychronized access, if reachable from multiple threads, � race 

conditions



Page: 215

Example: GNU classpath 0.08 java.util.Vector

public int lastIndexOf(Object elem)

{

return lastIndexOf(elem, elementCount – 1);

}

public synchronized int lastIndexOf(Ojbect e, int
index)

{

….

}



Page: 216

Ideas:

We do not know the design of the class. 

Thread safe of not ?

No STD-Annotation for that 

(but there are submissions for that)

So findbugs looks if only 80% are synced. 

If yes, 20% may be bugs… ;-)



Page: 217



Page: 218

Writing new FindBugs detectors

Why?: 

– You may find bug patterns in your own code

– OK, write a FindBugs detector

How? 

– Inspect bytecode…

– Use “ByteCode Outline” Eclipse Plugin

There are many ways to implement a FindBugs detector

– Often, simple techniques (e.g., sequential scan) suffice



Page: 219

Basic Approach Algorithm:

Start with a bug (important!)

Write the simplest possible detector

While (not happy && False positive rate )

Refine: improve analysis FP suppression heuristics

Done



Page: 220

Example Bug

Don’t use String literals for the synchronized blocks!

static private final String LOCK = "LOCK";

void someMethod() {

synchronized(LOCK) {

...

}

}

Real world example from Jetty

If other code synchronizes on same String: deadlock



Page: 221

Writing a detector

Add test case

Bytecode:

LDC "LOCK"

DUP

ASTORE 1

MONITORENTER

Let’s use opcode stack.

Could also look for bytecode sequence.



Page: 222

SynchronizationOnSharedBuiltinConstant

public void sawOpcode(int seen) {

if (seen == MONITORENTER) {

OpcodeStack.Item top = stack.getStackItem(0);

if (top.getSignature().equals("Ljava/lang/String;")

&& top.getConstant() instanceof String)

bugReporter.reportBug(new BugInstance(this,

"DL_SYNCHRONIZATION_ON_SHARED_CONSTANT",

NORMAL_PRIORITY)

.addClassAndMethod(this)

.addString((String)constant)

.addSourceLine(this));

}

}



Page: 223

Results

Found issue fixed in Jetty-352.

Jetty-352 didn’t fix all occurrences in Jetty (Jetty-362).

Also found occurrences in Eclipse, glassfish, Sun’s JDK, 

netbeans, nutch, oc4j, weblogic, websphere

Not bad for 20 minutes work



Page: 224

Bytecode frameworks

Fb detectors are based on bytecode

Frameworks:

– BCEL (http://jakarta.apache.org/bcel/); DOM-like API

– ASM (http://asm.objectweb.org/); SAX-like API

Currently BCEL, future is ASM



Page: 225

Types of detectors

implementation techniques:

– Inspecting class/method/field structure

– Micropatterns: simple bytecode patterns

– Stack-based patterns

– Dataflow analysis

– Interprocedural analysis

supported by ready-made base classes 

and support infrastructure



Page: 226

More simple rules:

do not require code analysis: e.g. 

– classes that override equals() but not hashCode()

– method naming problems 

(e.g., hashcode() instead of hashCode())



Page: 227

More simple rules



Page: 228

Stack-based patterns

Micropatterns where the values on the operand

stack are significant.

Example:

– As seen : look for monitorenter on constant String value

Typical implementation strategy:

– Inquire about values on operand stack

– Warn when suspicious instruction sequence/stack values 

seen



Page: 229

Dataflow analysis

Use intraprocedural dataflow analysis to infer

(probable) facts within methods.

– You may need to dust off your copy of the Dragon book.

Examples:

– Find dereferences of null values

– Find field accesses not consistently protected by a lock



Page: 230

Interprocedural analysis

Summarize method behavior, and use that

summary at each call site

Examples:

– Method parameters that are unconditionally dereferenced

– Return values that are always nonnull

– Methods that always throw an exception



Page: 231

Caveat



Page: 232

Caveat

Bytecode != Bytecode
Eclipse ejc and JDK javac



Page: 233

New Features of FindBugs



Page: 234

Behaviour Annotations

– Help your friendly static analyzer

– proprietary Annotations in fb and IntelliJ (MS SAL, etc)

– JSR 305: Annotations for Software Defect Detection

– Examples

• @NonNull

• @CheckForNull

• @checkReturnValue

• @Tainted/@Unteinated/@Detainted

– JSR 308: Annotations on Java Types

• ArrayList<@Nonnull String> a = ...

• JDK 7, more flexible



Page: 235

Computing bug history

Dashboard like

– Keep track when bugs were introduced/resolved

– Historical recorder

Cloud version

– Show this ☺

Roadmap ?

– Refactor findbugs itself (see next chapter)

– Client API, multicore analysis, cleanup BCEL, etc



Page: 236



Page: 237

Findbugs, eclipse



Page: 238

Findbugs, eclipse



Page: 239

Findbugs, eclipse



Page: 240

Findbugs, eclipse



Page: 241

Findbugs, eclipse



Page: 242

Findbugs, JDK



Page: 243

Findbugs, JDK



Page: 244

Findbugs, JDK



Page: 245

Findbugs, JDK



Page: 246

I am your friend



Page: 247

Software-Architecture: Definitions

IEEE 1471-2000:

– The fundamental organization of a system,

– embodied in its components, 

– their relationship to each other and the environment,

– and the principles governing its design and evolution. 

Kruchten: captured in two documents:

– Software Architecture Document

– Software Design Guidelines



Page: 248

Architectural Erosion



Page: 249

Architecture Erosion ALWAYS happens



Page: 250

Architecture Erosion ALWAYS happens

– Time pressure leads to abbreviations, 

– Prototypes become products 

– Hacks. Architectural restrictions are ignored 

– Lack of understanding the “should architecture”

leading to extensions and modification which obey 

only micro- and macro architecture. (e.g. outsourcing)

– impossible to detect manually architectural violations 

in a nontrivilal software system



Page: 251

Architectural Erosion

“Sometimes the developers manage to 

maintain this purity of design through the 

initial development and into the first release.

More often something goes wrong.The

software starts to rot like a piece of bad 

meat”.

Uncle Bob: “Agile Software Development”



Page: 252

Aim of Architectural Analysis

-Findbugs

- do codelevel lints care about architecture ?

- Is there a architecture ?

- Is there a erosion ?

- Do AA-Tool work well ? 



Page: 253



Page: 254

Findbugs: the first years

0.7.2 

(03/2004)

0.8.6 

(10/2004)



Page: 255

Findbugs: the first years

0.8.6 

(10/2004)

0.8.7 

(05/2005)



Page: 256

Findbugs 0.8.7: Architectural Analysis



Page: 257

Wellcome crappy architecture…

0.8.8 

(05/2005)
1.0.0 

(06/2006)



Page: 258

We can do worse…

1.3.0 

(07/2007)



Page: 259

We can do MORE worse…

1.3.8 

(03/2009)



Page: 260

Still managable ?



Page: 261

Findbugs: and the next level of checking ;-)



Page: 262

Findbugs 1.2.1: Architectural Analysis



Page: 263

Modeling Subsystems:



Page: 264

Modeling Subsystems:



Page: 265

Modeling Subsystems:



Page: 266

Fixing Architectural Violations



Page: 267

Fixing Architectural Violations



Page: 268

Fixing Architectural Violations



Page: 269

Fixing Architectural Violations



Page: 270

Fixing Architectural Violations



Page: 271

Fixing Architectural Violations



Page: 272

References

URL

– Findbugs

– PMD

– Checkstyle

Books

– Effective Java

– Java Puzzlers

– Other languages: MISRA/C/C++, Effective XYZ

Architecture checking

– ACCU 2009 presentation

– SE-RADIO episode 115



Page: 273

Care about…

Code quality

Architecture

It is really easy !


