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Overview:

Levels of Static Analysis

– Code, Design, Architectural

Code/Design Analysis

– FindBugs: overview, examples

– Rules: Effective Java, custom FB rule

– Checkstyle, PMD

Architectural Analysis

– FindBugs evolution

– Tool Support, examples

Summary
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Possible levels of Static Analysis:

Goal: find, avoid Problems, Increase QA (and measure it)

Micro-Level

– Code

– e.g: =, ==, { }, 

Macro-Level

– Class-Design

– e.g: by reference, String concat, Exception-Handling

Architecture-Level:

– Layers, Graphs, Subsystems, Compoments, Interfaces

– e.g: Coupling, Dependency, etc…

Tool-support for each level…
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Micro-Level / Code:

Language itself

– Appendix F/ANSI or G/ISO

• Unspecified behavior

• Undefined behavior

• Implementation-defined behavior

• Locale-specific behavior

Usage of Language

– Misplacement

– Omission and Addition

– Unexpected behavior

– Complexity
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Macro-Level: Design + Coding Guidelines
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Java: findbugs
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C++: VisualLint, Integrations of…
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C#: FxCop (Microsoft)
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Static Analysis

Analyzes your program without executing it

Doesn’t depend on having good test cases

– or even any test cases

Doesn’t know what your software is supposed to do 

– (In general) 

– Looks for violations of reasonable programming

– Shouldn’t throw NPE

– Shouldn’t allow SQL injection

Not a replacement for testing

– Very good at finding problems on untested paths

– But many defects can’t be found with static analysis
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Static Analysis

Pros/Cons:

– can help improve code quality

– but lots of improvement still possible and need

– Getting to the point where it really helps

FindBugs as example here:

– Commercial: lint, coverity, QA/C/C++, fortify, CodeTest etc)

– Free: PMD, etc.

Not a stylechecker

– Checkstyle, IDE, astyle
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if (in == null)

try {

in.close ();

…

}

Eclipse 3.0.0. M8

What is lurcking in your code ?

Findbugs is looking for simple, stupid bugs
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if (listeners == null)

listeners.remove(listener )
;

sun.awt.x11.XMSelection

JDK1.6.0, b105
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public String foundType () {

return this.foundType ();

}

j.l.annotation.AnnotationTypeMismatchException

JDK1.6.0, b13

Bug by Josh Bloch, author of Effective Java
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FindBugs:

features:

– GUI (swing,eclipse,netbeans)

– Commandline, buildserver

– Bytecode-level static analysis

– XML-based format for saved warnings

• Handling multiple versions of software

• Tracking warnings over time

focus developing new analyses, empirical studies, etc.

Large user base: test your idea works in the “real world”
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No silver bullets

Static analysis…

– won’t ensure your code is correct or of high quality

Other techniques (more?) valuable

– careful design

– Testing

– Code review
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Skim the cream

Find more/faster issues comp. testing

Should be part of your development proc

Integrate in buildserver

Established: look a new+high prio issues
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Bug Categroies and Bug Patterns

Bug Categories 

Bug Patterns



Page: 178

Bug Categories

– Correctness 

– Bad practice

– Dodgy code

– Multithreaded correctness

– Potential performance problems

– Malicious code vulnerability
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Bug Patterns

Some big, broad and common patterns

– Dereferencing a null pointer

– An impossible checked cast

– Methods whose return value should not be ignored

Lots of small, specific bug patterns, 

that together find lots of bugs

– Every Programming Puzzler

– Every chapter in Effective Java
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Analysis Techniques

Local pattern matching

– String.toLowerCase(), don’t ignore the return value

Intraprocedural dataflow analysis

– Null pointer, type cast errors

Interprocedural method summaries

– E.g. method always dereferences its parameter

Context sensitive interprocedural analysis

– Interprocedural flow of untrusted data, injection
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Categories, ranking, use cases:

customize what you want to look at

audit of a newly written module with 1,000 lines of code

scan 1,000,000 lines of “legacy” code

use cases require different tunings
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Infinite recursive loop

Typical bug for CS students

/** Construct a WebSpider */

public WebSpider () {

w = new WebSpider ();

}

Okay this is (silly) student stuff…
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Number of infinite recursive loops

5 infinite recursive loops in JDK

27 across all versions of JDK,

40+ in Google’s Java code

??? in Eclipse code

??? in your code

org.netbeans.modules.web.monitor.client.MonitorAction

public static void log(String s) {

log ( “MonitorAction :: ” +s)

}
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Examples of null pointer bugs

//com.sun.corba.se.impl.naming.cosnaming.NamingContextImpl

if (name != null || name.length > 0)

//com.sun.xml.internal.ws.wsdl.parser.RuntimeWSDLParser

if (part == null | part.equals (""))

// sun.awt.x11.ScrollPanePeer

if (g != null)

paintScrollBars(g,colors );

g.dispose ();
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Redundant Check For Null

Checking a value to see if it is null When it can't be null

// java.awt.image.LoopupOp, lines 236-247

public final WritableRaster filter(

Raster src, WritableRaster dst) {

int dstLength = dst.getNumBands();

// Create a new destination Raster,

// if needed

if (dst == null)
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Bad Method Invocation

Methods whose return value shouldn't be ignored

– Strings are immutable, so functions like trim() 

and toLowerCase() return new String

Lots of specific rules about particular API methods

– Hard to memorize, easy to get wrong



Page: 187

Examples of bad method calls

// com.sun.rowset.CachedRowSetImpl

if (type == Types.DECIMAL || type == Types.NUMERIC)

((java.math.BigDecimal)x).setScale(scale);

// com.sun.xml.internal.txw2.output.XMLWriter

try { ... }

catch (IOException e) {

new SAXException("Server side Exception:" + e);

}
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More results:

Glassfish

– 29 ignored return values

– 59 classes with equals() but not hashCode()

– 9 calls to equals will always return false

– 18 statement + 98 branches with NPE

– 10 methods with IRL

Weblogic

– 1166 ignored return values

– 254 classes with equals() but not hashCode()

– 45 calls to equals will always return false

– 35 statement + 98 branches with NPE

– 21 methods with IRL
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ACCU

– mentored developer list 

– Effective Java

– (Effective C++)

– (Design Patterns)
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3 Methods Common to All Objects

– Item 8: Obey the general contract when overriding equals

– Item 9: Always override hashCode when you override equals

– Item 10: Always override toString

– Item 11: Override clone judiciously

– Item 12: Consider implementing Comparable
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Item 8: Obey contract overriding equals

easiest way to avoid problems is:
– not to override equals

right thing to do if any of the following conditions apply:
– Each instance of the class is inherently unique (no value)

• Thread

– don’t care whether class provides a “logical equality” test
• java.util.Random

– A superclass has already overridden equals, 
&& the superclass behavior is appropriate for this class.

• Set impls inherit equals from AbstractSet
(dito List, Map)
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Item 8: Obey contract overriding equals

right thing to do if any of the following conditions apply:

– class is private or package-private, and you are certain that 
its equals method will never be invoked

• Really certain ? 

@Override public boolean equals(Object o) {
// Method is never called

throw new AssertionError(); 
}
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Item 8: Obey contract overriding equals

When to override Object.equals () ?

– logical equality that differs from mere object identity

– Value classes (Integer, Date, etc)

– must adhere to its general contract for Object [JavaSE6]:

The equals method implements an equivalence relation.

• Reflexive:

• Symmetric:

• Transitive:

• Consistent: multiple invocations of x.equals(y) return same value

• For any non-null reference value x, x.equals(null) must return false.
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Item 8: Obey contract overriding equals

a recipe for a high-quality equals() method:
– Use == operator to check if argument is a reference to this 

object

• If so, return true . Performance optimization

– Use the instanceof operator to check if the argument has the 
correct type

• If not, return false .

– Cast the argument to the correct type

– For each “significant” field in the class, check matches

• For primitive fields, use == operator

• For object reference fields, use equals ()

• For float/double use Float/Double.compare()
• Arrays.equals

– Watch out for null
(field == null ? o.field == null : 

field.equals(o.field))
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Item 8: Obey contract overriding equals

Caveat when overriding equals() method

– Always override hashCode when override equals (Item 9).

– Don’t try to be too clever 

• If you are overly aggressive in searching for equivalence, 

it’s easy to get into trouble. E.g. aliasing))

– Don’t substitute another type for Object in the equals 

declaration (override vs. overload)

//MyClass.class

public boolean equals(MyClass o) {

...

}

� Consistent use of the @Override annotation
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Test Item 8 with real code

Equal objects must have equal hash codes

– Fail: override equals() but not hashCode() 

(or other way around)

– Object violating the contract won’t work in 

hash table, maps, set, etc

– Examples: (53 bugs in JDK 1.6.0)

– java.awt.geom.Area

– javax.management.Attribute
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4 Classes and Interfaces 

– Item 13: Minimize the accessibility of classes and members

– Item 14: In public classes, use accessor methods,not public fields

– Item 15: Minimize mutability

– Item 16: Favor composition over inheritance

– Item 17: Design and document for inheritance or else prohibit it

– Item 18: Prefer interfaces to abstract classes

– Item 19: Use interfaces only to define types

– Item 20: Prefer class hierarchies to tagged classes

– Item 21: Use function objects to represent strategies

– Item 22: Favor static member classes over nonstatic
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Item 13: min accessibility of classes/members

well-designed module ?

– decouples the modules that comprise a system,

– increases software reuse

Java access modifiers

– For top-level (non-nested) classes and interfaces:

• package-private
• public

– For members (fields, methods, nested classes, and nested 
interfaces),

• private
• package-private
• protected
• public



Page: 199

Item 13: min accessibility of classes/members

Rule: always use lowest access level 

– consider nested If only used by one other class

– private fields leak into API if class implements Serializable

– protected member is part of exported API, must be supported

Instance fields should never be public

– give up the ability to limit the values that can be stored

– no enforcing of invariants

– no control over time of modification (� thread unsafe !)

– no switch to a new internal data representation
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Item 13: min accessibility of classes/members

public static fields ?
– Same as public instance fields. But make them final
– fields should be primitive value or reference to immutable

// Potential security hole! Client/content
public static final Thing[] VALUES = { ... };

// Fix ?
private static final Thing[] PRIVATE_VALUES = { ...  };

public static final List<Thing> VALUES =
Collections. unmodifiableList (Arrays.asList(PRIVATE_VALUES

));

public static final Thing[] values()
{return PRIVATE_VALUES. clone() ;}
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When Bad Code Isn't A Bug
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When Bad Code Isn't A Bug

// com.sun.jndi.dns.DnsName, lines 345-347
if (n instanceof CompositeName) {

// force ClassCastException
n = (DnsName) n;

}

// com.sun.corba.se.impl.dynamicany.DynAnyComplexImpl
String expectedMemberName = null;
try {

expectedMemberName = 
expectedTypeCode.member_name(i);

} catch (BadKind badKind) { // impossible
} catch (Bounds bounds) { // impossible
}
if ( !(expectedMemberName.equals(memberName) ... ))
{
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Other Categories

Bad practice

Dodgy code

Multithreaded correctness

Performance

Vulnerability to malicious code
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Bad Practice

A class that defines an equals method but inherits

hashCode from Object

equals method doesn't handle null argument

Serializable class without a serialVersionUID

Exception caught and ignored

Broken out from the correctness category because I 

never want a developer to yawn when I show them a 

"correctness" bug
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Dodgy code

Dead local store - a value is stored into a local variable, 

but that value is never used

Use of non-short circuit boolean logic

Switch statement fallthrough

Branch where code on both branches is identical
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Multithreaded correctness

Inconsistent synchronization - a lock is held most of the 

time a field is accessed, but not always

Problems with wait/notify - e.g., call to wait() not in loop

thread unsafe lazy initialization of static field
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Performance

Unused field

Invocation of Boolean or Integer constructors

Using hashCode or equals method on a URL

final constant field that could be made static

Loop with quadratic string concatenation

Inner class that could be made static
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Vunerability to Malicious code

public static non-final fields

public static final fields that reference mutable objects

Methods that don’t defensively copy mutable 

arguments before storing them into fields

Methods that don’t defensively copy mutable values 

stored in fields before returning them
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Confusing/bad naming

– Maybe more a “style” issue ?

– Methods with identical names and signatures

• But different capitalization of names

• Override in subclass really ? Overload ?

– Method name same as class name

– � resolved by Java5 @Overrides annotation
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Bad naming in Eclipse

package org.eclipse.jface.dialogs;

public abstract class Dialog extends Window {

protected Button getOKButton () {

….

}

public class InputDialog extends Dialog {

protected Button getOkButton() {

….

}
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Bad naming in BCEL

public int hashcode() {

return basic_type.hashCode();

}
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Read Return Value ignored

– InputStream.read()

– � read into a byte array, return number of bytes read

– Can be less than number requested

– Programmers sometimes fail to check return value

– Example: of GNU Class path XXX todo
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Return Value ingored: e.g. immutable Classes

Operations on immutable objects

// Eclipse 3.0.0M8

String name workingCopy.getName();

Name.replace(‘/’, ‘.’);

Or example: 

– create Thread and do NOT start it

– Create Exception but do NOT throw it 

(also in eclipse)
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Inconsistent Synchronisation

– Common idiom for thread safe classes is to sync on the 

receiver object (“this”)

– Findbugs checks for field access

• Find classes, where lock on “this” is not always (only sometimes)

• Unsnychronized access, if reachable from multiple threads, � race 

conditions
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Example: GNU classpath 0.08 java.util.Vector

public int lastIndexOf(Object elem)

{

return lastIndexOf(elem, elementCount – 1);

}

public synchronized int lastIndexOf(Ojbect e, int
index)

{

….

}
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Ideas:

We do not know the design of the class. 

Thread safe of not ?

No STD-Annotation for that 

(but there are submissions for that)

So findbugs looks if only 80% are synced. 

If yes, 20% may be bugs… ;-)
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Writing new FindBugs detectors

Why?: 

– You may find bug patterns in your own code

– OK, write a FindBugs detector

How? 

– Inspect bytecode…

– Use “ByteCode Outline” Eclipse Plugin

There are many ways to implement a FindBugs detector

– Often, simple techniques (e.g., sequential scan) suffice
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Basic Approach Algorithm:

Start with a bug (important!)

Write the simplest possible detector

While (not happy && False positive rate )

Refine: improve analysis FP suppression heuristics

Done
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Example Bug

Don’t use String literals for the synchronized blocks!

static private final String LOCK = "LOCK";

void someMethod() {

synchronized(LOCK) {

...

}

}

Real world example from Jetty

If other code synchronizes on same String: deadlock
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Writing a detector

Add test case

Bytecode:

LDC "LOCK"

DUP

ASTORE 1

MONITORENTER

Let’s use opcode stack.

Could also look for bytecode sequence.
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SynchronizationOnSharedBuiltinConstant

public void sawOpcode(int seen) {

if (seen == MONITORENTER) {

OpcodeStack.Item top = stack.getStackItem(0);

if (top.getSignature().equals("Ljava/lang/String;")

&& top.getConstant() instanceof String)

bugReporter.reportBug(new BugInstance(this,

"DL_SYNCHRONIZATION_ON_SHARED_CONSTANT",

NORMAL_PRIORITY)

.addClassAndMethod(this)

.addString((String)constant)

.addSourceLine(this));

}

}
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Results

Found issue fixed in Jetty-352.

Jetty-352 didn’t fix all occurrences in Jetty (Jetty-362).

Also found occurrences in Eclipse, glassfish, Sun’s JDK, 

netbeans, nutch, oc4j, weblogic, websphere

Not bad for 20 minutes work



Page: 224

Bytecode frameworks

Fb detectors are based on bytecode

Frameworks:

– BCEL (http://jakarta.apache.org/bcel/); DOM-like API

– ASM (http://asm.objectweb.org/); SAX-like API

Currently BCEL, future is ASM
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Types of detectors

implementation techniques:

– Inspecting class/method/field structure

– Micropatterns: simple bytecode patterns

– Stack-based patterns

– Dataflow analysis

– Interprocedural analysis

supported by ready-made base classes 

and support infrastructure
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More simple rules:

do not require code analysis: e.g. 

– classes that override equals() but not hashCode()

– method naming problems 

(e.g., hashcode() instead of hashCode())
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More simple rules
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Stack-based patterns

Micropatterns where the values on the operand

stack are significant.

Example:

– As seen : look for monitorenter on constant String value

Typical implementation strategy:

– Inquire about values on operand stack

– Warn when suspicious instruction sequence/stack values 

seen
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Dataflow analysis

Use intraprocedural dataflow analysis to infer

(probable) facts within methods.

– You may need to dust off your copy of the Dragon book.

Examples:

– Find dereferences of null values

– Find field accesses not consistently protected by a lock
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Interprocedural analysis

Summarize method behavior, and use that

summary at each call site

Examples:

– Method parameters that are unconditionally dereferenced

– Return values that are always nonnull

– Methods that always throw an exception
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Caveat
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Caveat

Bytecode != Bytecode
Eclipse ejc and JDK javac
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New Features of FindBugs
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Behaviour Annotations

– Help your friendly static analyzer

– proprietary Annotations in fb and IntelliJ (MS SAL, etc)

– JSR 305: Annotations for Software Defect Detection

– Examples

• @NonNull

• @CheckForNull

• @checkReturnValue

• @Tainted/@Unteinated/@Detainted

– JSR 308: Annotations on Java Types

• ArrayList<@Nonnull String> a = ...

• JDK 7, more flexible
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Computing bug history

Dashboard like

– Keep track when bugs were introduced/resolved

– Historical recorder

Cloud version

– Show this ☺

Roadmap ?

– Refactor findbugs itself (see next chapter)

– Client API, multicore analysis, cleanup BCEL, etc
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Findbugs, eclipse
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Findbugs, eclipse
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Findbugs, eclipse
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Findbugs, eclipse
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Findbugs, eclipse
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Findbugs, JDK
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Findbugs, JDK
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Findbugs, JDK
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Findbugs, JDK
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I am your friend
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Software-Architecture: Definitions

IEEE 1471-2000:

– The fundamental organization of a system,

– embodied in its components, 

– their relationship to each other and the environment,

– and the principles governing its design and evolution. 

Kruchten: captured in two documents:

– Software Architecture Document

– Software Design Guidelines
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Architectural Erosion
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Architecture Erosion ALWAYS happens
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Architecture Erosion ALWAYS happens

– Time pressure leads to abbreviations, 

– Prototypes become products 

– Hacks. Architectural restrictions are ignored 

– Lack of understanding the “should architecture”

leading to extensions and modification which obey 

only micro- and macro architecture. (e.g. outsourcing)

– impossible to detect manually architectural violations 

in a nontrivilal software system
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Architectural Erosion

“Sometimes the developers manage to 

maintain this purity of design through the 

initial development and into the first release.

More often something goes wrong.The

software starts to rot like a piece of bad 

meat”.

Uncle Bob: “Agile Software Development”



Page: 252

Aim of Architectural Analysis

-Findbugs

- do codelevel lints care about architecture ?

- Is there a architecture ?

- Is there a erosion ?

- Do AA-Tool work well ? 
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Findbugs: the first years

0.7.2 

(03/2004)

0.8.6 

(10/2004)
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Findbugs: the first years

0.8.6 

(10/2004)

0.8.7 

(05/2005)
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Findbugs 0.8.7: Architectural Analysis
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Wellcome crappy architecture…

0.8.8 

(05/2005)
1.0.0 

(06/2006)
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We can do worse…

1.3.0 

(07/2007)
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We can do MORE worse…

1.3.8 

(03/2009)
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Still managable ?
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Findbugs: and the next level of checking ;-)
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Findbugs 1.2.1: Architectural Analysis
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Modeling Subsystems:
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Modeling Subsystems:
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Modeling Subsystems:
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Fixing Architectural Violations
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Fixing Architectural Violations
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Fixing Architectural Violations
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Fixing Architectural Violations
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Fixing Architectural Violations
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Fixing Architectural Violations
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Care about…

Code quality

Architecture

It is really easy !


