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NOSQL

• Not Only SQL

• A broad church!
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NoSQL DEFINITION: Next Generation Databases 
mostly address some of the points: being non-
relational, distributed, open-source and horizontal 
scalable. The original intention has been modern web-
scale databases. The movement began early 2009 and 
is growing rapidly. Often more characteristics apply as: 
schema-free, replication support, easy API, 
eventually consistency / BASE (not ACID), and more.

http://nosql-database.org/
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• Key-Value Stores

• Amazon SimpleDB, Redis, Scalaris, Tokyo Cabinet, Berkeley DB

• Distributed Key-Value Stores

• Amazon Dynamo, Project Voldemort

• BigTable

• Google BigTable, HBase/Hadoop, Cassandra, Hypertable

• Graph

• Neo4J, VertexDB

• Document Store

• CouchDB, MongoDB, Riak

Definition by example
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What's wrong with 
RDBMSs?

• Relationships don't survive partitioning:

• Integrity rules and Joins

• Schema rigidity

• Decomposing data too early

• Hard to change

• Integrity rules often surplus to requirements and defeat…

• ORMs

• Brrr.

• Mordac
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CAP

• Consistency

• All clients see the same data, even with concurrent 
updates

• Availability

• All clients can read & write some version of the data

• Partition Tolerance

• Scaling: we can partition the data across multiple nodes

• Pick Two
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Consistency

Availability Partition 
Tolerance

Paxos-based 
solutionsRDBMS

CouchDB
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CouchDB
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CouchDB
Cluster Of Unreliable Commodity Hardware
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Concurrency

• Written in Erlang

• Scales to multiple cores smoothly

• One Erlang process per request

• Lock-free design: MVCC

• Each process sees the version of the 
database that existed at the beginning of 
the request
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Robustness

• Erlang's crash-only design

• No DB repair necessary

• Snapshots/hot backups trivial: just copy the 
files
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Fault Tolerance

• Continuous replication

• Load-balancing & sharding via couchdb-
lounge
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Who's using it?

• BBC

• Ubuntu One

• Opscode Chef

• Mozilla Raindrop

• Couchio

• Cloudant

• myspace, IBM, Apple, ebay

• …and more
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Architecture

diagram from couchdb.apache.org
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Storage Engine
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Storage Engine

• B+Tree

• Append-only design

• Like SVN

• Values are structured JSON documents, 
with free-form binary attachments if 
needed

• Each document has a unique _id key
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View Servers
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View Servers

• Map/Reduce design

• Map/Reduce functions stored in special "_design" 
documents

• View server protocol allows any language to be 
used

• JavaScript by default

• Python, Scala, Ruby and others available

• Native Erlang views possible too
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View results

• Each view's results stored as a B+Tree

• Map function results as leaf nodes

• Reduce function results in inner nodes

• Results are only updated when view used

• …and only for updated documents
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r( [r([A]), r([G, M]), 3] )

3r([G, M])r([A])

G MA
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JavaScript

• Objects are hashes:
var obj = { "k1": "value", "k2": 12 };

• Values retrieved via index:
var val = obj["value"];

• …or dot-notation (iff key is not a keyword):
var val = obj.value;

• Arrays are objects with integer keys and a length member:
var ar = ["foo", 12];
ar[0] === "foo";
ar.length === 2;
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Functions

• Functions are declared like this:
function f(a, b) = { return a + b; }

• They're values; this is better:
var f = function(a, b) { return a + b; }
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Iteration

• Iteration using for:
for (k in obj) { print(obj[k]); }
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JSON

• JavaScript Object Notation

• Doug Crockford

• Serialise data as JavaScript representation

• That's all!
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Client API
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Client API

• RESTful HTTP transport

• JSON request and response body

• CouchDB listens on 127.0.0.1:5984 by 
default
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RESTful HTTP

• PUT path/new-resource data

• POST path/resource data

• GET path/resource

• DELETE path/resource
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Databases

• PUT db

• DELETE db

• GET _all_dbs
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Documents

• Create + Update

• PUT db/id data

• Read

• GET db/id

• Delete

• DELETE db/id
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Documents

• Updates for HTML <form> users

• POST db/id data

• Requires Content-Type: multipart/form-
data
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Creating Documents

• Create returns ok, id, rev

• Retrieve shows the same id and rev as _id 
and _rev members
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Updating Documents

• Remember MVCC?

• Must specify latest _rev when updating

• If you don't have latest _rev, request will fail

• Need to get latest _rev again

• Resolve any conflicts in client
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Attachments
• Create

• PUT db/id/attachment

Content-Type: type

• Read

• GET db/id/attachment

• Update

• PUT db/id/attachment?rev=old-rev

• Delete

• DELETE db/id/attachment

• Attachment meta-data is stored in a document's 
_attachment key
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Tedious

• Specifying _rev gets a bit tedious when 
using curl

• There must be an easier way to 
experiment…
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Futon
http://localhost:5984/_utils
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Document IDs

• Must be unique

• Ensure uniqueness using your own scheme 
OR

• Ask CouchDB for some IDs:

• GET _uuids?count=n
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Document IDs

• Must be unique

• Ensure uniqueness using your own scheme 
OR

• Ask CouchDB for some IDs:

• GET _uuids?count=n

• OR use on-the-fly id creation (inefficient):

• POST db data
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Retrieving All 
Documents

• GET db/_all_docs?include_docs=true
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Limiting

• Use parameters to _all_docs

• startkey

• endkey

• limit

• skip

• GET db/_all_docs?startkey="s"&limit=n
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Querying with Views

• So far, just looked at CouchDB as KV store

• Views are how we do queries

• _all_docs is a built-in view

• We need some data first
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Food Example

• Each document represents a person and 
their fruit & veg preferences
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Who likes pears?
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Who likes pears?
• people-by-fruit:

function(doc) {
  if (doc.preferences.fruit) {
    for (i in doc.preferences.fruit) {
      emit(doc.preferences.fruit[i], doc._id);
    }
  }
}

• emit(key, value) adds a row to the result

• i.e. it stores value under key in the view's B-
tree
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Design Documents

• Begin with _design/

• _design/food:
{
  "views": {
    "people-by-fruit": {
      "map": "function(doc) { ... }"
    }
  }
}

• (curl not much use for this: use Futon)

Sunday, 18 April 2010



Running views

• GET db/_design/view

• Returns list of doc-id, key, value

• Can limit using key, startkey, endkey, limit 
and skip

• Show full containing doc with 
include_docs=true
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Who likes pears?

$ curl -X GET 'http://localhost:5984/accu-food/
_design/food/_view/people-by-fruit?key="pears"'

{"total_rows":10,"offset":6,"rows":[
{"id":"alice","key":"pears","value":"alice"},
{"id":"eve","key":"pears","value":"eve"},
{"id":"harry","key":"pears","value":"harry"},
{"id":"tom","key":"pears","value":"tom"}
]}
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What's happening?

• The map function is applied to any updated 
documents, and the view's B-tree updated

• We then index into the results with key

• If no documents are updated before the 
next use of the view, it will just index into 
the B-tree of results
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Who likes carrots?

• Could do the same for veg as we did for 
fruit

• Can do better

• Modify people-by-fruit to emit a complex 
key
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Who likes carrots?

$ curl -g -X GET 'http://localhost:5984/accu-food/
_design/food/_view/people-by-food?key=
["veg","carrots"]'

{"total_rows":16,"offset":11,"rows":[
{"id":"bob","key":["veg","carrots"],"value":"bob"},
{"id":"dick","key":["veg","carrots"],"value":"dick"}
]}
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Who likes pears and 
carrots?
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Who likes pears and 
carrots?

• Can't really be done in CouchDB alone

• Need to run two queries

• Make the intersection in client software

• Not every classic RDBM problem can be 
solved!
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Who likes statistics?

• We all do!

• How do we count

• The number of people who like pears?

• The number of people who like veg?
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Reduce

• Modify people-by-food to return a count 
instead of doc._id

• Add a reduce function:
{
  "views": {
    "people-by-fruit": {
      "map": "function(doc) { ... }"
      "reduce": "function(keys, values, rereduce) 
{ ... }"
    }
  }
}
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How many people like 
pears?

$ curl -g -X GET 'http://localhost:5984/accu-food/
_design/food/_view/food-count?key=["fruit","pears"]'

{"rows":[
{"key":null,"value":4}
]}
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How many people like 
veg?

$ curl -g -X GET 'http://localhost:5984/accu-food/
_design/food/_view/food-count?startkey=["veg","a"]
&endkey=["veg","z"]'

{"rows":[
{"key":null,"value":7}
]}

• Collation is unicode order

• Uses IBM's ICU library

• Can skip ICU collation using raw=true
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Grouping

• Querying a reduce view normally shows 
final reduction i.e. that at the root node of 
the B-tree

• Can show "lower" results by adding 
group=true and group_level
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Final scores
$ curl -g -X GET 'http://localhost:5984/accu-food/_design/food/_view/
food-count?group=true'

{"rows":[
{"key":["fruit","apples"],"value":2},
{"key":["fruit","bananas"],"value":1},
{"key":["fruit","durian"],"value":1},
{"key":["fruit","kiwis"],"value":1},
{"key":["fruit","kumquats"],"value":1},
{"key":["fruit","pears"],"value":4},
{"key":["veg","broccoli"],"value":1},
{"key":["veg","carrots"],"value":3},
{"key":["veg","celeriac"],"value":1},
{"key":["veg","potatoes"],"value":2}
]}

$ curl -g -X GET 'http://localhost:5984/accu-food/_design/food/_view/
food-count?group=true&group_level=1'

{"rows":[
{"key":["fruit"],"value":10},
{"key":["veg"],"value":7}
]}
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Reduce Parameters

• keys: n keys that correspond to the…

• values: n values of the map results to be 
reduced.

• rereduce: true if we're reducing non-leaf 
nodes
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Reduce Caveats

• Reduce should produce a scalar value

• Don't try and produce a complex value

• e.g. a hash of unique keys and their 
counts

• Complex values munch storage, often 
becoming bigger than the document B-
Tree itself
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Map/Reduce wrap-up

• Map/Reduce functions are side-effect free

• Only scratched the surface in terms of 
techniques

• Haven't covered handling different 
document types (although we've hinted at 
it)

• 0.11 includes linked documents
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Formatting results

• Output seen so far

• JSON

• Futon-formatted

• Wouldn't it be nice if we could get 
CouchDB to format our data?
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Show Functions

• Format a document

• Live in the shows key of a design document

• function(doc, req)

• doc is the doc

• req is the HTML Request object

• return HTTP Response object or body string

• GET db/_design/design/_show/show/id
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function(doc, req) {
  log(req);
  send("<!DOCTYPE html>");
  send("<html><head><title>" + doc._id + "</title></head><body>");
  send("<h1>" + doc._id + "</h1>");
  for (type in doc.preferences) {
    send("<h2>" + type + "</h2><ul>");
    for (i in doc.preferences[type]) {
      send("<li>" + doc.preferences[type][i] + "</li>");
    }
    send("</ul>");
  }
  send("</body></html>");
  return "";
}
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List Functions

• Format a view

• Lives in the lists key of a _design document

• function(head, req)

• head is {total_rows: n, offset: n}

• req is the HTTP Request object

• return HTTP Response object or body 
string
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function(head, req) {
  start({"headers": {"Content-Type": "text/html"}});

  send("<!DOCTYPE html>\n");
  send("<html><head><title>People</title></head><body>");

  var row = null;
  var curtype = null;
  var curitem = null;

  while (row = getRow()) {
    if (row.key[0] !== curtype) {
      curtype = row.key[0];
      curitem = null;
      send("<h1>" + curtype + "</h1>");
    }
    if (row.key[1] !== curitem) {
      curitem = row.key[1];
      send("<h2>" + curitem + " are enjoyed by</h2>");
    }
    send("<p>" + row.value + "</p>");
  }

  send("</body></html>");
  return "";
}
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Helper functions

• toJSON(obj)

• Converts obj to a JSON string

• JSON.parse(string)

• Converts JSON string to an object

• send(chunk)

• Append chunk to the body of the result

• start(obj)

• Like calling return obj
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Format Helpers

• registerType(name, content-type, …)

• registers name as a format mapped to a list 
of content-types

• provides(name, function() { … })

• registers function as providing the 
rendering code for the given format.  
Formats can be specified explicitly as a 
query parameter ?format=name or by the 
HTTP Accepts header.
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Result object keys

• code

• headers

• body

• stop

• Returning {"stop": true} terminates 
list function early
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Update functions

• Can change document data!

• Useful for adding timestamps

• Live in updates key of design document

• GET db/_design/design/_update/
update/id
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Update functions

• function(curdoc, req)

• curdoc is the current contents of the 
document identified by req.id

• may be null if no such document exists

• can create one!

• return [newdoc, resp]

• resp is as the return value in show and list 
functions
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Validation

• validate_doc_update key in design doc

• One per design doc

• All validation functions in db are called on 
an update
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Validation

• function(new-doc, old-doc, user-context)

• user-context contains {db, name, roles}

• throw({"forbidden": reason}) on failure
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Replication
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Replication API
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Replication API

• One-shot

• POST db/_replicate
{"source": "http://host-a/db",
 "target": "http://host-b/db"}

• Continuous

• POST db/_replicate
{"source": "…", "target": "…",
 "continuous": true}
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Changes API

• Continuous replication requires host-b to 
monitor host-a

• Done via Changes API
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Changes API

• GET db/_changes

• since=db-seq

• feed=[longpoll|continous]

• default is immediate return; longpoll waits for 1 
change; continuous keeps on truckin'

• heartbeat=millis

• returns
{"seq": db-seq, "id": doc-id,
 "changes": [{"rev": rev, …}, …]
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Conflicts

• Occur when a document id is changed on 
host-a and host-b

• Conflicting revs in the invisible _conflicts key

• Need a conflicts view to find them

• CouchDB always resolves conflicts 
automatically using it's own algorithm

• We may want to do something else
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Resolving Conflicts

• Look at the conflicting and current revs

• GET db/id

• GET db/id?rev=conflict-rev

• Merge/replace in your client code

• Put the winner back

• PUT db/id

• Delete the conflicting revs

• DELETE db/id?rev=conflict-rev
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Security
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Authentication

• Both HTTP BasicAuth and Cookie-based 
authentication is available
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Permissions & Roles

• Users have read or read/write privs.

• Also have roles

• Available in user-context parameter in 
validate_doc_update, so…

• You can implement your own write 
security scheme
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What's not there

• No SSL

• Everyone can read

• …so you may want to reverse-proxy 
CouchDB and apply your own stricter 
rules

Sunday, 18 April 2010



Performance & Tuning

Sunday, 18 April 2010



View speed

• Allow use of old view data with stale=ok

• If all requests use stale=ok view will 
never update!

• Refresh views with externally scheduled 
job
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Update speed

• Use the _bulk_docs endpoint with user-
defined, monotonic document IDs

• Queue updates with batch=ok

• Commit to disk controlled by 
batch_save_size/interval .ini params or…

• POST db/_ensure_full_commit

• Require full sync-on-commit (more reliable, 
but slower): delayed_commits .ini param
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CouchDB benchmark

$ test/bench/run
1..6
# Single doc inserts: 162.75 docs/second
ok 1 single_doc_insert
# Single doc inserts with batch=ok: 466.09 docs/second
ok 2 batch_ok_doc_insert
# Bulk docs - 100: 4115.23 docs/second
ok 3 bulk_doc_100
# Bulk docs - 1000: 4202.56 docs/second
ok 4 bulk_doc_1000
# Bulk docs - 5000: 3934.68 docs/second
ok 5 bulk_doc_5000
# Bulk docs - 10000: 3942.67 docs/second
ok 6 bulk_doc_10000
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View Servers

• Some view servers are faster than others

• Python is faster than JavaScript
[http://www.mikealrogers.com/archives/673]

• JSON serialisation is a bottleneck

• Can use Erlang native view server

• …but only as last resort!
BIG trade-off in convenience.
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Client API

• Native Erlang access via hovercraft

• Bypasses HTTP transport overhead
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DB Space

• B-Tree grows and grows

• Need to remove old revs

• Compaction must be triggered manually

• POST db/_compact

• POST db/_compact/design
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Old View Data

• Changing a view implementation creates a 
new view B-Tree

• Old B-Trees are left hanging around

• Manual cleanup is required

• POST db/_view_cleanup
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Couch Apps
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• You can host a full application stack in CouchDB 
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Couch Apps

• You can host a full application stack in CouchDB 
alone

• Futon

• MVC perspective

• Controller: JavaScript in the browser

• Model: documents + views

• View: show + list + static attachments (CSS, 
JS)
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Problems

• No way to re-use code in map/reduce/
show/list

• This is unlikely to happen on the server 
side, since it will hamper internal caching of 
design documents

• Even unsophisticated list/show functions 
will duplicate big chunks of code
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couchapp

• Build a design document in the filesystem

• couchapp push http: //host/db

• ...will create a design document at _id with 
directory hierarchy mapped to JSON 
object hierarchy

• json files become JSON objects

• other files become strings
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Code re-use

• Macros in .js files are expanded prior to 
upload

• !code path/to/file.js

• Includes the specified javascript in your 
function

• !json path.to.file

• Creates an object hierarchy with only the 
leafmost node populated
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Cloning

• You can extract a pushed couchapp back 
into the filesystem

• This opens up the idea of easily sharing 
your couchapps

• Not a substitute for proper DVCS though!
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Clustering

• Roll-your-own, or…

• Use couchdb-lounge

• Sharded CouchDB instances

• python+twisted proxy

• Delegates requests

• Joins results

• Still need to roll-your-own replication
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Hosting

• Cloudant have a big clustering solution in 
private beta

• Couchio offer individual CouchDB 
instances
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Why?

• You have a good idea of how the 
relationships in your model work

• You want to be able to deploy on desktop 
and server, and synchronise between them

• You may need to scale to handle big data at 
some point

• You want a flexible B-tree to build your 
own clustering solution on: Cloudant
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Bowdlerised from http://browsertoolkit.com/fault-tolerance.png
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