
CouchDB

Can we be comfortable without SQL?

ACCU • 14th April 2010
Guy Bolton King • guy@waftex.com

Sunday, 18 April 2010

No SQL?

Sunday, 18 April 2010

No SQL?
Sunday, 18 April 2010

NOSQL

• Not Only SQL

• A broad church!

Sunday, 18 April 2010

NoSQL DEFINITION: Next Generation Databases
mostly address some of the points: being non-
relational, distributed, open-source and horizontal
scalable. The original intention has been modern web-
scale databases. The movement began early 2009 and
is growing rapidly. Often more characteristics apply as:
schema-free, replication support, easy API,
eventually consistency / BASE (not ACID), and more.

http://nosql-database.org/

Definition by fiat

Sunday, 18 April 2010

Definition by example

Sunday, 18 April 2010

• Key-Value Stores

• Amazon SimpleDB, Redis, Scalaris, Tokyo Cabinet, Berkeley DB

Definition by example

Sunday, 18 April 2010

• Key-Value Stores

• Amazon SimpleDB, Redis, Scalaris, Tokyo Cabinet, Berkeley DB

• Distributed Key-Value Stores

• Amazon Dynamo, Project Voldemort

Definition by example

Sunday, 18 April 2010

• Key-Value Stores

• Amazon SimpleDB, Redis, Scalaris, Tokyo Cabinet, Berkeley DB

• Distributed Key-Value Stores

• Amazon Dynamo, Project Voldemort

• BigTable

• Google BigTable, HBase/Hadoop, Cassandra, Hypertable

Definition by example

Sunday, 18 April 2010

• Key-Value Stores

• Amazon SimpleDB, Redis, Scalaris, Tokyo Cabinet, Berkeley DB

• Distributed Key-Value Stores

• Amazon Dynamo, Project Voldemort

• BigTable

• Google BigTable, HBase/Hadoop, Cassandra, Hypertable

• Graph

• Neo4J, VertexDB

Definition by example

Sunday, 18 April 2010

• Key-Value Stores

• Amazon SimpleDB, Redis, Scalaris, Tokyo Cabinet, Berkeley DB

• Distributed Key-Value Stores

• Amazon Dynamo, Project Voldemort

• BigTable

• Google BigTable, HBase/Hadoop, Cassandra, Hypertable

• Graph

• Neo4J, VertexDB

• Document Store

• CouchDB, MongoDB, Riak

Definition by example

Sunday, 18 April 2010

What's wrong with
RDBMSs?

Sunday, 18 April 2010

What's wrong with
RDBMSs?

• Relationships don't survive partitioning:

Sunday, 18 April 2010

What's wrong with
RDBMSs?

• Relationships don't survive partitioning:

• Integrity rules and Joins

Sunday, 18 April 2010

What's wrong with
RDBMSs?

• Relationships don't survive partitioning:

• Integrity rules and Joins

• Schema rigidity

Sunday, 18 April 2010

What's wrong with
RDBMSs?

• Relationships don't survive partitioning:

• Integrity rules and Joins

• Schema rigidity

• Decomposing data too early

Sunday, 18 April 2010

What's wrong with
RDBMSs?

• Relationships don't survive partitioning:

• Integrity rules and Joins

• Schema rigidity

• Decomposing data too early

• Hard to change

Sunday, 18 April 2010

What's wrong with
RDBMSs?

• Relationships don't survive partitioning:

• Integrity rules and Joins

• Schema rigidity

• Decomposing data too early

• Hard to change

• Integrity rules often surplus to requirements and defeat…

Sunday, 18 April 2010

What's wrong with
RDBMSs?

• Relationships don't survive partitioning:

• Integrity rules and Joins

• Schema rigidity

• Decomposing data too early

• Hard to change

• Integrity rules often surplus to requirements and defeat…

• ORMs

Sunday, 18 April 2010

What's wrong with
RDBMSs?

• Relationships don't survive partitioning:

• Integrity rules and Joins

• Schema rigidity

• Decomposing data too early

• Hard to change

• Integrity rules often surplus to requirements and defeat…

• ORMs

• Brrr.

Sunday, 18 April 2010

What's wrong with
RDBMSs?

• Relationships don't survive partitioning:

• Integrity rules and Joins

• Schema rigidity

• Decomposing data too early

• Hard to change

• Integrity rules often surplus to requirements and defeat…

• ORMs

• Brrr.

• Mordac

Sunday, 18 April 2010

CAP

Sunday, 18 April 2010

CAP

• Consistency

Sunday, 18 April 2010

CAP

• Consistency

• All clients see the same data, even with concurrent
updates

Sunday, 18 April 2010

CAP

• Consistency

• All clients see the same data, even with concurrent
updates

• Availability

Sunday, 18 April 2010

CAP

• Consistency

• All clients see the same data, even with concurrent
updates

• Availability

• All clients can read & write some version of the data

Sunday, 18 April 2010

CAP

• Consistency

• All clients see the same data, even with concurrent
updates

• Availability

• All clients can read & write some version of the data

• Partition Tolerance

Sunday, 18 April 2010

CAP

• Consistency

• All clients see the same data, even with concurrent
updates

• Availability

• All clients can read & write some version of the data

• Partition Tolerance

• Scaling: we can partition the data across multiple nodes

Sunday, 18 April 2010

CAP

• Consistency

• All clients see the same data, even with concurrent
updates

• Availability

• All clients can read & write some version of the data

• Partition Tolerance

• Scaling: we can partition the data across multiple nodes

• Pick Two

Sunday, 18 April 2010

Consistency

Availability Partition
Tolerance

Paxos-based
solutionsRDBMS

CouchDB

Sunday, 18 April 2010

CouchDB

Sunday, 18 April 2010

CouchDB
Cluster Of Unreliable Commodity Hardware

Sunday, 18 April 2010

Features

Sunday, 18 April 2010

Concurrency

Sunday, 18 April 2010

Concurrency

• Written in Erlang

Sunday, 18 April 2010

Concurrency

• Written in Erlang

• Scales to multiple cores smoothly

Sunday, 18 April 2010

Concurrency

• Written in Erlang

• Scales to multiple cores smoothly

• One Erlang process per request

Sunday, 18 April 2010

Concurrency

• Written in Erlang

• Scales to multiple cores smoothly

• One Erlang process per request

• Lock-free design: MVCC

Sunday, 18 April 2010

Concurrency

• Written in Erlang

• Scales to multiple cores smoothly

• One Erlang process per request

• Lock-free design: MVCC

• Each process sees the version of the
database that existed at the beginning of
the request

Sunday, 18 April 2010

Robustness

Sunday, 18 April 2010

Robustness

• Erlang's crash-only design

Sunday, 18 April 2010

Robustness

• Erlang's crash-only design

• No DB repair necessary

Sunday, 18 April 2010

Robustness

• Erlang's crash-only design

• No DB repair necessary

• Snapshots/hot backups trivial: just copy the
files

Sunday, 18 April 2010

Fault Tolerance

Sunday, 18 April 2010

Fault Tolerance

• Continuous replication

• Load-balancing & sharding via couchdb-
lounge

Sunday, 18 April 2010

Who's using it?

• BBC

• Ubuntu One

• Opscode Chef

• Mozilla Raindrop

• Couchio

• Cloudant

• myspace, IBM, Apple, ebay

• …and more

Sunday, 18 April 2010

Architecture

diagram from couchdb.apache.org

Sunday, 18 April 2010

Storage Engine

Sunday, 18 April 2010

Storage Engine

• B+Tree

• Append-only design

• Like SVN

• Values are structured JSON documents,
with free-form binary attachments if
needed

• Each document has a unique _id key

Sunday, 18 April 2010

G MA 3

Sunday, 18 April 2010

G MA M'3

Sunday, 18 April 2010

M'GM A 3

Sunday, 18 April 2010

View Servers

Sunday, 18 April 2010

View Servers

• Map/Reduce design

• Map/Reduce functions stored in special "_design"
documents

• View server protocol allows any language to be
used

• JavaScript by default

• Python, Scala, Ruby and others available

• Native Erlang views possible too

Sunday, 18 April 2010

View results

Sunday, 18 April 2010

View results

• Each view's results stored as a B+Tree

• Map function results as leaf nodes

• Reduce function results in inner nodes

• Results are only updated when view used

• …and only for updated documents

Sunday, 18 April 2010

r([r([A]), r([G, M]), 3])

3r([G, M])r([A])

G MA

Sunday, 18 April 2010

JavaScript

• Objects are hashes:
var obj = { "k1": "value", "k2": 12 };

• Values retrieved via index:
var val = obj["value"];

• …or dot-notation (iff key is not a keyword):
var val = obj.value;

• Arrays are objects with integer keys and a length member:
var ar = ["foo", 12];
ar[0] === "foo";
ar.length === 2;

Sunday, 18 April 2010

Functions

• Functions are declared like this:
function f(a, b) = { return a + b; }

• They're values; this is better:
var f = function(a, b) { return a + b; }

Sunday, 18 April 2010

Iteration

• Iteration using for:
for (k in obj) { print(obj[k]); }

Sunday, 18 April 2010

JSON

• JavaScript Object Notation

• Doug Crockford

• Serialise data as JavaScript representation

• That's all!

Sunday, 18 April 2010

Client API

Sunday, 18 April 2010

Client API

• RESTful HTTP transport

Sunday, 18 April 2010

Client API

• RESTful HTTP transport

• JSON request and response body

Sunday, 18 April 2010

Client API

• RESTful HTTP transport

• JSON request and response body

• CouchDB listens on 127.0.0.1:5984 by
default

Sunday, 18 April 2010

RESTful HTTP

• PUT path/new-resource data

• POST path/resource data

• GET path/resource

• DELETE path/resource

Sunday, 18 April 2010

Databases

• PUT db

• DELETE db

• GET _all_dbs

Sunday, 18 April 2010

Documents

• Create + Update

• PUT db/id data

• Read

• GET db/id

• Delete

• DELETE db/id

Sunday, 18 April 2010

Documents

• Updates for HTML <form> users

• POST db/id data

• Requires Content-Type: multipart/form-
data

Sunday, 18 April 2010

Creating Documents

• Create returns ok, id, rev

• Retrieve shows the same id and rev as _id
and _rev members

Sunday, 18 April 2010

Updating Documents

• Remember MVCC?

• Must specify latest _rev when updating

• If you don't have latest _rev, request will fail

• Need to get latest _rev again

• Resolve any conflicts in client

Sunday, 18 April 2010

Attachments
• Create

• PUT db/id/attachment

Content-Type: type

• Read

• GET db/id/attachment

• Update

• PUT db/id/attachment?rev=old-rev

• Delete

• DELETE db/id/attachment

• Attachment meta-data is stored in a document's
_attachment key

Sunday, 18 April 2010

Tedious

• Specifying _rev gets a bit tedious when
using curl

• There must be an easier way to
experiment…

Sunday, 18 April 2010

Futon
http://localhost:5984/_utils

Sunday, 18 April 2010

Document IDs

Sunday, 18 April 2010

Document IDs

• Must be unique

Sunday, 18 April 2010

Document IDs

• Must be unique

• Ensure uniqueness using your own scheme
OR

Sunday, 18 April 2010

Document IDs

• Must be unique

• Ensure uniqueness using your own scheme
OR

• Ask CouchDB for some IDs:

• GET _uuids?count=n

Sunday, 18 April 2010

Document IDs

• Must be unique

• Ensure uniqueness using your own scheme
OR

• Ask CouchDB for some IDs:

• GET _uuids?count=n

• OR use on-the-fly id creation (inefficient):

• POST db data

Sunday, 18 April 2010

Retrieving All
Documents

• GET db/_all_docs?include_docs=true

Sunday, 18 April 2010

Limiting

• Use parameters to _all_docs

• startkey

• endkey

• limit

• skip

• GET db/_all_docs?startkey="s"&limit=n

Sunday, 18 April 2010

Querying with Views

• So far, just looked at CouchDB as KV store

• Views are how we do queries

• _all_docs is a built-in view

• We need some data first

Sunday, 18 April 2010

Food Example

• Each document represents a person and
their fruit & veg preferences

Sunday, 18 April 2010

Who likes pears?

Sunday, 18 April 2010

Who likes pears?
• people-by-fruit:

Sunday, 18 April 2010

Who likes pears?
• people-by-fruit:

function(doc) {

Sunday, 18 April 2010

Who likes pears?
• people-by-fruit:

function(doc) {
 if (doc.preferences.fruit) {

Sunday, 18 April 2010

Who likes pears?
• people-by-fruit:

function(doc) {
 if (doc.preferences.fruit) {
 for (i in doc.preferences.fruit) {

Sunday, 18 April 2010

Who likes pears?
• people-by-fruit:

function(doc) {
 if (doc.preferences.fruit) {
 for (i in doc.preferences.fruit) {
 emit(doc.preferences.fruit[i], doc._id);

Sunday, 18 April 2010

Who likes pears?
• people-by-fruit:

function(doc) {
 if (doc.preferences.fruit) {
 for (i in doc.preferences.fruit) {
 emit(doc.preferences.fruit[i], doc._id);
 }

Sunday, 18 April 2010

Who likes pears?
• people-by-fruit:

function(doc) {
 if (doc.preferences.fruit) {
 for (i in doc.preferences.fruit) {
 emit(doc.preferences.fruit[i], doc._id);
 }
 }

Sunday, 18 April 2010

Who likes pears?
• people-by-fruit:

function(doc) {
 if (doc.preferences.fruit) {
 for (i in doc.preferences.fruit) {
 emit(doc.preferences.fruit[i], doc._id);
 }
 }
}

Sunday, 18 April 2010

Who likes pears?
• people-by-fruit:

function(doc) {
 if (doc.preferences.fruit) {
 for (i in doc.preferences.fruit) {
 emit(doc.preferences.fruit[i], doc._id);
 }
 }
}

• emit(key, value) adds a row to the result

Sunday, 18 April 2010

Who likes pears?
• people-by-fruit:

function(doc) {
 if (doc.preferences.fruit) {
 for (i in doc.preferences.fruit) {
 emit(doc.preferences.fruit[i], doc._id);
 }
 }
}

• emit(key, value) adds a row to the result

• i.e. it stores value under key in the view's B-
tree

Sunday, 18 April 2010

Design Documents

• Begin with _design/

• _design/food:
{
 "views": {
 "people-by-fruit": {
 "map": "function(doc) { ... }"
 }
 }
}

• (curl not much use for this: use Futon)

Sunday, 18 April 2010

Running views

• GET db/_design/view

• Returns list of doc-id, key, value

• Can limit using key, startkey, endkey, limit
and skip

• Show full containing doc with
include_docs=true

Sunday, 18 April 2010

Who likes pears?

$ curl -X GET 'http://localhost:5984/accu-food/
_design/food/_view/people-by-fruit?key="pears"'

{"total_rows":10,"offset":6,"rows":[
{"id":"alice","key":"pears","value":"alice"},
{"id":"eve","key":"pears","value":"eve"},
{"id":"harry","key":"pears","value":"harry"},
{"id":"tom","key":"pears","value":"tom"}
]}

Sunday, 18 April 2010

What's happening?

Sunday, 18 April 2010

What's happening?

• The map function is applied to any updated
documents, and the view's B-tree updated

Sunday, 18 April 2010

What's happening?

• The map function is applied to any updated
documents, and the view's B-tree updated

• We then index into the results with key

Sunday, 18 April 2010

What's happening?

• The map function is applied to any updated
documents, and the view's B-tree updated

• We then index into the results with key

• If no documents are updated before the
next use of the view, it will just index into
the B-tree of results

Sunday, 18 April 2010

Who likes carrots?

• Could do the same for veg as we did for
fruit

• Can do better

• Modify people-by-fruit to emit a complex
key

Sunday, 18 April 2010

Who likes carrots?

$ curl -g -X GET 'http://localhost:5984/accu-food/
_design/food/_view/people-by-food?key=
["veg","carrots"]'

{"total_rows":16,"offset":11,"rows":[
{"id":"bob","key":["veg","carrots"],"value":"bob"},
{"id":"dick","key":["veg","carrots"],"value":"dick"}
]}

Sunday, 18 April 2010

Who likes pears and
carrots?

Sunday, 18 April 2010

Who likes pears and
carrots?

• Can't really be done in CouchDB alone

Sunday, 18 April 2010

Who likes pears and
carrots?

• Can't really be done in CouchDB alone

• Need to run two queries

Sunday, 18 April 2010

Who likes pears and
carrots?

• Can't really be done in CouchDB alone

• Need to run two queries

• Make the intersection in client software

Sunday, 18 April 2010

Who likes pears and
carrots?

• Can't really be done in CouchDB alone

• Need to run two queries

• Make the intersection in client software

• Not every classic RDBM problem can be
solved!

Sunday, 18 April 2010

Who likes statistics?

Sunday, 18 April 2010

Who likes statistics?

• We all do!

Sunday, 18 April 2010

Who likes statistics?

• We all do!

• How do we count

Sunday, 18 April 2010

Who likes statistics?

• We all do!

• How do we count

• The number of people who like pears?

Sunday, 18 April 2010

Who likes statistics?

• We all do!

• How do we count

• The number of people who like pears?

• The number of people who like veg?

Sunday, 18 April 2010

Reduce

• Modify people-by-food to return a count
instead of doc._id

• Add a reduce function:
{
 "views": {
 "people-by-fruit": {
 "map": "function(doc) { ... }"
 "reduce": "function(keys, values, rereduce)
{ ... }"
 }
 }
}

Sunday, 18 April 2010

How many people like
pears?

$ curl -g -X GET 'http://localhost:5984/accu-food/
_design/food/_view/food-count?key=["fruit","pears"]'

{"rows":[
{"key":null,"value":4}
]}

Sunday, 18 April 2010

How many people like
veg?

$ curl -g -X GET 'http://localhost:5984/accu-food/
_design/food/_view/food-count?startkey=["veg","a"]
&endkey=["veg","z"]'

{"rows":[
{"key":null,"value":7}
]}

• Collation is unicode order

• Uses IBM's ICU library

• Can skip ICU collation using raw=true

Sunday, 18 April 2010

Grouping

• Querying a reduce view normally shows
final reduction i.e. that at the root node of
the B-tree

• Can show "lower" results by adding
group=true and group_level

Sunday, 18 April 2010

Final scores
$ curl -g -X GET 'http://localhost:5984/accu-food/_design/food/_view/
food-count?group=true'

{"rows":[
{"key":["fruit","apples"],"value":2},
{"key":["fruit","bananas"],"value":1},
{"key":["fruit","durian"],"value":1},
{"key":["fruit","kiwis"],"value":1},
{"key":["fruit","kumquats"],"value":1},
{"key":["fruit","pears"],"value":4},
{"key":["veg","broccoli"],"value":1},
{"key":["veg","carrots"],"value":3},
{"key":["veg","celeriac"],"value":1},
{"key":["veg","potatoes"],"value":2}
]}

$ curl -g -X GET 'http://localhost:5984/accu-food/_design/food/_view/
food-count?group=true&group_level=1'

{"rows":[
{"key":["fruit"],"value":10},
{"key":["veg"],"value":7}
]}

Sunday, 18 April 2010

Reduce Parameters

• keys: n keys that correspond to the…

• values: n values of the map results to be
reduced.

• rereduce: true if we're reducing non-leaf
nodes

Sunday, 18 April 2010

Reduce Caveats

• Reduce should produce a scalar value

• Don't try and produce a complex value

• e.g. a hash of unique keys and their
counts

• Complex values munch storage, often
becoming bigger than the document B-
Tree itself

Sunday, 18 April 2010

Map/Reduce wrap-up

Sunday, 18 April 2010

Map/Reduce wrap-up

• Map/Reduce functions are side-effect free

Sunday, 18 April 2010

Map/Reduce wrap-up

• Map/Reduce functions are side-effect free

• Only scratched the surface in terms of
techniques

Sunday, 18 April 2010

Map/Reduce wrap-up

• Map/Reduce functions are side-effect free

• Only scratched the surface in terms of
techniques

• Haven't covered handling different
document types (although we've hinted at
it)

Sunday, 18 April 2010

Map/Reduce wrap-up

• Map/Reduce functions are side-effect free

• Only scratched the surface in terms of
techniques

• Haven't covered handling different
document types (although we've hinted at
it)

• 0.11 includes linked documents

Sunday, 18 April 2010

Formatting results

• Output seen so far

• JSON

• Futon-formatted

• Wouldn't it be nice if we could get
CouchDB to format our data?

Sunday, 18 April 2010

Show Functions

• Format a document

• Live in the shows key of a design document

• function(doc, req)

• doc is the doc

• req is the HTML Request object

• return HTTP Response object or body string

• GET db/_design/design/_show/show/id

Sunday, 18 April 2010

function(doc, req) {
 log(req);
 send("<!DOCTYPE html>");
 send("<html><head><title>" + doc._id + "</title></head><body>");
 send("<h1>" + doc._id + "</h1>");
 for (type in doc.preferences) {
 send("<h2>" + type + "</h2>");
 for (i in doc.preferences[type]) {
 send("" + doc.preferences[type][i] + "");
 }
 send("");
 }
 send("</body></html>");
 return "";
}

Sunday, 18 April 2010

List Functions

• Format a view

• Lives in the lists key of a _design document

• function(head, req)

• head is {total_rows: n, offset: n}

• req is the HTTP Request object

• return HTTP Response object or body
string

Sunday, 18 April 2010

function(head, req) {
 start({"headers": {"Content-Type": "text/html"}});

 send("<!DOCTYPE html>\n");
 send("<html><head><title>People</title></head><body>");

 var row = null;
 var curtype = null;
 var curitem = null;

 while (row = getRow()) {
 if (row.key[0] !== curtype) {
 curtype = row.key[0];
 curitem = null;
 send("<h1>" + curtype + "</h1>");
 }
 if (row.key[1] !== curitem) {
 curitem = row.key[1];
 send("<h2>" + curitem + " are enjoyed by</h2>");
 }
 send("<p>" + row.value + "</p>");
 }

 send("</body></html>");
 return "";
}

Sunday, 18 April 2010

Helper functions

• toJSON(obj)

• Converts obj to a JSON string

• JSON.parse(string)

• Converts JSON string to an object

• send(chunk)

• Append chunk to the body of the result

• start(obj)

• Like calling return obj

Sunday, 18 April 2010

Format Helpers

• registerType(name, content-type, …)

• registers name as a format mapped to a list
of content-types

• provides(name, function() { … })

• registers function as providing the
rendering code for the given format.
Formats can be specified explicitly as a
query parameter ?format=name or by the
HTTP Accepts header.

Sunday, 18 April 2010

Result object keys

• code

• headers

• body

• stop

• Returning {"stop": true} terminates
list function early

Sunday, 18 April 2010

Update functions

• Can change document data!

• Useful for adding timestamps

• Live in updates key of design document

• GET db/_design/design/_update/
update/id

Sunday, 18 April 2010

Update functions

• function(curdoc, req)

• curdoc is the current contents of the
document identified by req.id

• may be null if no such document exists

• can create one!

• return [newdoc, resp]

• resp is as the return value in show and list
functions

Sunday, 18 April 2010

Validation

• validate_doc_update key in design doc

• One per design doc

• All validation functions in db are called on
an update

Sunday, 18 April 2010

Validation

• function(new-doc, old-doc, user-context)

• user-context contains {db, name, roles}

• throw({"forbidden": reason}) on failure

Sunday, 18 April 2010

Replication

Sunday, 18 April 2010

Replication API

Sunday, 18 April 2010

Replication API

• One-shot

• POST db/_replicate
{"source": "http://host-a/db",
 "target": "http://host-b/db"}

• Continuous

• POST db/_replicate
{"source": "…", "target": "…",
 "continuous": true}

Sunday, 18 April 2010

Changes API

• Continuous replication requires host-b to
monitor host-a

• Done via Changes API

Sunday, 18 April 2010

Changes API

• GET db/_changes

• since=db-seq

• feed=[longpoll|continous]

• default is immediate return; longpoll waits for 1
change; continuous keeps on truckin'

• heartbeat=millis

• returns
{"seq": db-seq, "id": doc-id,
 "changes": [{"rev": rev, …}, …]

Sunday, 18 April 2010

Conflicts

• Occur when a document id is changed on
host-a and host-b

• Conflicting revs in the invisible _conflicts key

• Need a conflicts view to find them

• CouchDB always resolves conflicts
automatically using it's own algorithm

• We may want to do something else

Sunday, 18 April 2010

Resolving Conflicts

• Look at the conflicting and current revs

• GET db/id

• GET db/id?rev=conflict-rev

• Merge/replace in your client code

• Put the winner back

• PUT db/id

• Delete the conflicting revs

• DELETE db/id?rev=conflict-rev

Sunday, 18 April 2010

Security

Sunday, 18 April 2010

Authentication

• Both HTTP BasicAuth and Cookie-based
authentication is available

Sunday, 18 April 2010

Permissions & Roles

• Users have read or read/write privs.

• Also have roles

• Available in user-context parameter in
validate_doc_update, so…

• You can implement your own write
security scheme

Sunday, 18 April 2010

What's not there

• No SSL

• Everyone can read

• …so you may want to reverse-proxy
CouchDB and apply your own stricter
rules

Sunday, 18 April 2010

Performance & Tuning

Sunday, 18 April 2010

View speed

• Allow use of old view data with stale=ok

• If all requests use stale=ok view will
never update!

• Refresh views with externally scheduled
job

Sunday, 18 April 2010

Update speed

• Use the _bulk_docs endpoint with user-
defined, monotonic document IDs

• Queue updates with batch=ok

• Commit to disk controlled by
batch_save_size/interval .ini params or…

• POST db/_ensure_full_commit

• Require full sync-on-commit (more reliable,
but slower): delayed_commits .ini param

Sunday, 18 April 2010

CouchDB benchmark

$ test/bench/run
1..6
Single doc inserts: 162.75 docs/second
ok 1 single_doc_insert
Single doc inserts with batch=ok: 466.09 docs/second
ok 2 batch_ok_doc_insert
Bulk docs - 100: 4115.23 docs/second
ok 3 bulk_doc_100
Bulk docs - 1000: 4202.56 docs/second
ok 4 bulk_doc_1000
Bulk docs - 5000: 3934.68 docs/second
ok 5 bulk_doc_5000
Bulk docs - 10000: 3942.67 docs/second
ok 6 bulk_doc_10000

Sunday, 18 April 2010

View Servers

• Some view servers are faster than others

• Python is faster than JavaScript
[http://www.mikealrogers.com/archives/673]

• JSON serialisation is a bottleneck

• Can use Erlang native view server

• …but only as last resort!
BIG trade-off in convenience.

Sunday, 18 April 2010

Client API

• Native Erlang access via hovercraft

• Bypasses HTTP transport overhead

Sunday, 18 April 2010

DB Space

• B-Tree grows and grows

• Need to remove old revs

• Compaction must be triggered manually

• POST db/_compact

• POST db/_compact/design

Sunday, 18 April 2010

Old View Data

• Changing a view implementation creates a
new view B-Tree

• Old B-Trees are left hanging around

• Manual cleanup is required

• POST db/_view_cleanup

Sunday, 18 April 2010

Couch Apps

Sunday, 18 April 2010

Couch Apps

• You can host a full application stack in CouchDB
alone

Sunday, 18 April 2010

Couch Apps

• You can host a full application stack in CouchDB
alone

• Futon

Sunday, 18 April 2010

Couch Apps

• You can host a full application stack in CouchDB
alone

• Futon

• MVC perspective

Sunday, 18 April 2010

Couch Apps

• You can host a full application stack in CouchDB
alone

• Futon

• MVC perspective

• Controller: JavaScript in the browser

Sunday, 18 April 2010

Couch Apps

• You can host a full application stack in CouchDB
alone

• Futon

• MVC perspective

• Controller: JavaScript in the browser

• Model: documents + views

Sunday, 18 April 2010

Couch Apps

• You can host a full application stack in CouchDB
alone

• Futon

• MVC perspective

• Controller: JavaScript in the browser

• Model: documents + views

• View: show + list + static attachments (CSS,
JS)

Sunday, 18 April 2010

Problems

Sunday, 18 April 2010

Problems

• No way to re-use code in map/reduce/
show/list

Sunday, 18 April 2010

Problems

• No way to re-use code in map/reduce/
show/list

• This is unlikely to happen on the server
side, since it will hamper internal caching of
design documents

Sunday, 18 April 2010

Problems

• No way to re-use code in map/reduce/
show/list

• This is unlikely to happen on the server
side, since it will hamper internal caching of
design documents

• Even unsophisticated list/show functions
will duplicate big chunks of code

Sunday, 18 April 2010

couchapp

• Build a design document in the filesystem

• couchapp push http: //host/db

• ...will create a design document at _id with
directory hierarchy mapped to JSON
object hierarchy

• json files become JSON objects

• other files become strings

Sunday, 18 April 2010

Code re-use

• Macros in .js files are expanded prior to
upload

• !code path/to/file.js

• Includes the specified javascript in your
function

• !json path.to.file

• Creates an object hierarchy with only the
leafmost node populated

Sunday, 18 April 2010

Cloning

• You can extract a pushed couchapp back
into the filesystem

• This opens up the idea of easily sharing
your couchapps

• Not a substitute for proper DVCS though!

Sunday, 18 April 2010

Clustering

• Roll-your-own, or…

• Use couchdb-lounge

• Sharded CouchDB instances

• python+twisted proxy

• Delegates requests

• Joins results

• Still need to roll-your-own replication

Sunday, 18 April 2010

Hosting

• Cloudant have a big clustering solution in
private beta

• Couchio offer individual CouchDB
instances

Sunday, 18 April 2010

Why?

• You have a good idea of how the
relationships in your model work

• You want to be able to deploy on desktop
and server, and synchronise between them

• You may need to scale to handle big data at
some point

• You want a flexible B-tree to build your
own clustering solution on: Cloudant

Sunday, 18 April 2010

flip

Bowdlerised from http://browsertoolkit.com/fault-tolerance.png

Sunday, 18 April 2010

http://browsertoolkit.com/fault-tolerance.png
http://browsertoolkit.com/fault-tolerance.png

