
Seb Rose - Rational Jazz Server

Jazz is an IBM initiative to help make software delivery teams more effective
• an architecture for lifecycle integration
• a portfolio of products designed to put the team first
• a community of stakeholders - http://jazz.net

Open Services for Lifecycle Collaboration (OSLC) to promote vendor interoperability
• http://open-services.net

JAZZ Integration Architecture (JIA)
• defines a set of cross-tool services (JFS), extended by products
• all services exposed via RESTful interface
• tools separated from definition & access to data

Rational JAZZ Team Server (JTS)
• Implements the JFS

http://jazz.net/

Didier Verna - Lisp, Jazz, Aikido

LISP, Jazz,
Aïkido

Didier Verna

LISP, Jazz, Aïkido
Three tales of the same story

Didier Verna

April 23, 2009

1/7

LISP, Jazz,
Aïkido

Didier Verna

My philosophy of life

Beauty: being able to evolve comfortably within a set of
constraints, which begins with accepting their
existence.
Fun: being able to break those constraints at will, and
then going back to them at will.
Unification: drawing bridges between (a priori)
unrelated domains, in the search for the essence of all
things.

2/7

LISP, Jazz,
Aïkido

Didier Verna

Where is the beauty ?

LISP Writing code in any language can be beautiful,
provided you know how to adapt your own ideas to the
language’s constraints.
Jazz Playing a song in any kind of music can be
beautiful, provided you know how to adapt your own
ideas to the music’s constraints.

3/7

LISP, Jazz,
Aïkido

Didier Verna

Where is the fun ?

LISP You can adapt the language to your own ideas
instead of just having to adapt your own ideas to it,
hence effectively breaking the rules or ordinary
languages (“programmable programming language”).
Jazz Improvisation (the essence of Jazz), lets you
adapt the music to your own ideas instead of forcing
you to adapt your ideas to it, effectively breaking the
rules of ordinary music.

4/7

LISP, Jazz,
Aïkido

Didier Verna

Unification

LISP Because it’s a meta-language, LISP is imperative,
procedural, functional, object-oriented, declarative,
anything you want.
Jazz Because Jazz is not a kind of music, but a way to
address all kinds of music, in Jazz there is jazz,
classical, pop, rock, hard-rock, rap, electro, anything
you want.

5/7

LISP, Jazz,
Aïkido

Didier Verna

Conclusion

The Tao
(setq *lisp* (make-instance ’my-phi-of-life))
(setq *jazz* (make-instance ’my-phi-of-life))

Do you love Jazz ?
Then, you should program in LISP.
Otherwise, you are wrong.

Do you already program in LISP?
Then, . . .

6/7

LISP, Jazz,
Aïkido

Didier Verna

Perspectives

Rush to http://www.didierverna.com

Buy my CD !!

Available on:
iTunes
CDBaby
Amazon
Napster
. . .

Related blog
http://www.didierverna.com/jazzblog/index.php?entry=entry070403-163007

7/7

http://www.didierverna.com/jazzblog/index.php?entry=entry070403-163007
http://www.didierverna.com/jazzblog/index.php?entry=entry070403-163007

Mark Bartosik - Hunting For Bugs

© Mark Bartosik, www.bugbrowser.com 1

Golden rules

• You are guilty until proven innocent
• Always generate debugging symbols
• The symbol server is your best friend
• All access violations are deadly
• Save a .DMP file
• Have sharp tools www.sysinternals.com

and “Debugging Tools for Windows”,
VS2005

http://www.sysinternals.com/

© Mark Bartosik, www.bugbrowser.com 2

Using WER
(example crash)

• WER will report Shell detected hangs “Application not responding”

• WER will report unhandled exceptions

© Mark Bartosik, www.bugbrowser.com 3

Using WER

© Mark Bartosik, www.bugbrowser.com 4

Reading .dmp files with WinDebug
• First download the latest Debugging Tools for Windows package.
 It is updated about twice a year, plus beta releases, currently at v6.6.

• Set the symbol path:
 .sympath
 or from the menu
 File, Symbol File Path…

• Make sure the Microsoft symbol server is on the path:
Add SRV*c:\websymbols*http://msdl.microsoft.com/download/symbols
 or use
.symfix+ c:\websymbols

• Make sure that path to the binary images is set
.exepath+ c:\where_your_binaries_are

 or from the menu

File, Image File Path…

• File, Open Crash Dump… (older versions also Debug, Go)

© Mark Bartosik, www.bugbrowser.com 5

Capturing post mortem files programmatically

• Implement a vectored exception handler,
not simple, catches almost everything.

• Implement an unhandled exception filter, easy but does not catch
everything.

• Implement an se_translator function
easy but not suitable for all projects.

• Implement an exception filter with __except, can be messy, scoped,
easy for per thread, does not catch everything.

• Implement catch(…),
not recommended.

• Whatever the mechanism used to intercept exceptions, we need a
process to create the dumpfile (doing this in-proc is not
recommended).

• A typical implementation will CreateProcess with a command line
of “dumpcapture-program –p pid”.

© Mark Bartosik, www.bugbrowser.com 6

Debugging exceptions
• Always trap access violations

• First column is first chance second column is second chance (unhandled)

© Mark Bartosik, www.bugbrowser.com 7

gflags
Part of
Debugging Tools for Windows

Do not enable both heap tail
checking and page heap

© Mark Bartosik, www.bugbrowser.com 8

Golden rules

• You are guilty until proven innocent
• Always generate debugging symbols
• The symbol server is your best friend
• All access violations are deadly
• Save a .DMP file
• Have sharp tools www.sysinternals.com

and “Debugging Tools for Windows”,
VS2005

http://www.sysinternals.com/

Jim Hague - A Thought For St George's Day

If it were done when 'tis done, then 'twere well
It were done quickly

- Macbeth, Act I Scene VII

Beware the ides of March.

- Julius Caesar, Act I Scene II

Beware the march of IDEs.

● Build system
● Version control view warping
● Coding by fiddling
● Fixing you into one window
●

Kevlin Henney - The Uncertainty Principle

Charles Bailey - git log --summary @{1 year ago}
@{now}

Who am I?

Charles Bailey

charles.bailey@igence.com

mailto:charles.bailey@igence.com

title – see below

git log --summary @{1 year ago} @{now}

How many?

● v1.5.4.5 to v1.6.2.1
● 3410 non-merge commits
● 910 merges

It works

● Built on a simple system that works
● The object model has not changed since 1.0
● It's unlikely to change

Staging area

git stage <files>

(aka: git add)

Stage some changes...

git stage -p

Don't lose your HEAD

git reflog

git reset HEAD@{n}

Don't lose your changes

git stash

Status isn't

git status =~ git commit --dry-run --verbose

rebase: update patch to latest

O – O – A – O – O – B
 \ – O – C <- I'm here

git rebase B
O – O – A – O – O – B – O' – C' <- I'm here
 [\ – O – C]

rebase: move patches to latest

O – O – A – O – O – B
 \ – O – C – O – D <- I'm here

git rebase --onto B C
O – O – A – O – O – B – O' – D' <- I'm here
 \ – O – C – O – D]

Olve Maudal - Analogy: A Codebase Is Like A
Kitchen

 Your codebase is like a kitchen

Olve Maudal
oma@pvv.org

5 minute lightening talk at ACCU 2009
April 24, 2009

Code Cleaning

(reproduced with kind permission of Thom Holwerda)

WTFs/minute

Analogy

The state of your codebase determines
what you can achieve

Analogy

Analogy

The codebase is like a kitchen

Analogy

suppose you are just going to make
something nice for yourself

Analogy

then, really, anything will do.

Even...

dirty kitchen

but, software development is usually about
more than just making something nice for
yourself.

It is usually about making something really
fancy...

together with a large team of
professionals...

for some demanding customer...

Then it is obvious:

To succeed you need a clean and
functioning working environment.

Your codebase is like a kitchen.

Keep it clean so that you can create
spectacular solutions for your
demanding customers!

Leave the campground
cleaner than you found it.

The Boy Scout Rule

The Importance of hygiene
Uncle Bob has suggested that we are now about to "discover" techniques and principles in
software engineering that can be compared to the discovery of the importance of hygiene in
hospitals by Ignaz Semmelweis in the middle of the 19th century.

(Semmelweis in the middle with arms crossed)

At the point where a certain standard hygiene was accepted and enforced by the medical
establishment, doctors started to behave as a group of professionals. This happened about 60
years after Semmelweis' discovery. As software engineers we are not always behaving like
professionals, especially not at times where we let pressure from management and customers
decide whether we write clean code or not. We know that dirty code is going to slow us down
and delay the project, but still, for some reason, we sometimes end up in situations where we
do exactly what we are not supposed to do. Imagine how a group of doctors today would react
to a situation where they are told not to wash their hands between surgeries? Doctors act as
professionals. Unfortunately, as a group of software engineers, we are not there... yet.

Semmelweis found that by introducing
hand washing standards before surgery
the number of fatal incidence caused by
diseases dropped drastically. At the
time, diseases were attributed to many
different unrelated causes. Each case
was considered unique, just like a
human person is unique. Semmelweis'
hypothesis, that there was only one
cause, that all that mattered was
cleanliness, was extreme at the time,
and was largely ignored, rejected or
ridiculed. [wikipedia]

Stewart Brodie - Character Encodings: Decoded &
Demystified

Encodings: Decoded & Demystified
24th April 2009

Stewart Brodie

Copyright © ANT Software Limited 2009

2

Universal Character Set (UCS)

All (UCS-4) characters are identified by a 21-bit number
terminology: “code point”

All characters are also identified by a name

Example: 'Latin Capital Letter A' written as: U+0041

“Universal” means nearly universal

U+1F04E is …

3

Universal Character Set (UCS)

All (UCS-4) characters are identified by a 21-bit number
terminology: “code point”

All characters are also identified by a name

Example: 'Latin Capital Letter A' written as: U+0041

“Universal” means nearly universal … no Klingon though!

U+1F04E is …

4

Universal Character Set (UCS)

All (UCS-4) characters are identified by a 21-bit number
terminology: “code point”

All characters are also identified by a name

Example: 'Latin Capital Letter A' written as: U+0041

“Universal” means nearly universal … no Klingon though!

U+1F04E is …

5

UCS-4: Pros & cons

Pros:

Code points storable in 32-bit integers
Very easy and fast to process in code

Cons:

Wasteful of memory: 4 bytes per character!
(Of course, given enough memory & disc space ...)

6

Encodings are ...

… a mapping for converting a sequence of bytes to a
sequence of code points (and vice versa)

… not always able to represent every code point
e.g. ASCII can only represent code points U+0000-U+007F

… sometimes fixed length, e.g. ISO Latin 1 (ISO 8859-1)

… sometimes variable length, e.g. UTF-8

… sometimes stateful! e.g. ISO/IEC 2022

7

UCS Translation Format (UTF)

UTF-32: four-byte based encoding (~= UCS-4)
UTF-16: two-byte based encoding (~= UCS-2)

(with different endianness variants!)

UTF-8: single byte based, variable-length encoding
– Invented by Ken Thompson (Bell Labs) 1992
– All basic Latin characters encoded in 1 byte
– Most other European characters in 2 bytes
– Most Far Eastern characters in 3 bytes
– All Basic Multi-lingual Plane in 1, 2 or 3 bytes
– Many useful properties (re-sync, error detect, bi-di

iteration)
– Can be processed (mostly) safely by usual C string APIs

8

Using the wrong encoding

“The project cost Â£1M”

9

Using the wrong encoding

“The project cost Â£1M”

Indicative of using Latin 1 to decode UTF-8 byte stream

UTF-8 encoding for U+00A3 is: 0xC2 0xA3

Latin 1 encoding for U+00C2 (Â) is: 0xC2
Latin 1 encoding for U+00A3 (£) is: 0xA3

Need to use the correct encoding to get the message right!

10

April 24th is a special day

Happy Birthday, Mum!

Keith Braithwaite - Backing the Truth into a Corner

Backing the Truth into a Corner

© Zühlke 2008

7 August 2008

Keith BraithwaiteKeith Braithwaite

Backing the Truth into a
Corner
Why do examples work so well?

And what can we do about it?

Backing the Truth into a Corner

© Zühlke 2008
Keith Braithwaite

7 August 2008
Slide

“I have nothing to sell. I
am an entertainer. [...]

I just want you to enjoy
a point of view which I

enjoy”

—Alan Watts
2

Backing the Truth into a Corner

© Zühlke 2008
Keith Braithwaite

7 August 2008
Slide

Cake or Biscuit?

3

Backing the Truth into a Corner

© Zühlke 2008
Keith Braithwaite

7 August 2008
Slide

Er...

4

Backing the Truth into a Corner

© Zühlke 2008
Keith Braithwaite

7 August 2008
Slide

Er...

Why?

• mainly because fresh cakes are soft and stale ones hard

• biscuits, vice–versa

4

Backing the Truth into a Corner

© Zühlke 2008
Keith Braithwaite

7 August 2008
Slide

Er...

Why?

• mainly because fresh cakes are soft and stale ones hard

• biscuits, vice–versa

Says who?

• Mr D. C. Potter, QC
– United Biscuits v HM Commissioners of Revenue and Customs, Lon/91/160

4

Backing the Truth into a Corner

© Zühlke 2008
Keith Braithwaite

7 August 2008
Slide

Er...

Why?

• mainly because fresh cakes are soft and stale ones hard

• biscuits, vice–versa

Says who?

• Mr D. C. Potter, QC
– United Biscuits v HM Commissioners of Revenue and Customs, Lon/91/160

Why would you care?

• Chocolate covered biscuits attract VAT

• Chocolate covered cakes do not 4

Backing the Truth into a Corner

© Zühlke 2008
Keith Braithwaite

7 August 2008
Slide

What Does This Tell Us?

5

Backing the Truth into a Corner

© Zühlke 2008
Keith Braithwaite

7 August 2008
Slide

What Does This Tell Us?

5

Categories are
not out in the
world waiting
for us

Backing the Truth into a Corner

© Zühlke 2008
Keith Braithwaite

7 August 2008
Slide

Counterintuitive

He actually presents reasons why Jaffa cakes aren’t:

• too small

• eaten the wrong way

• little in common with other cakes

• not sold with other cakes

• etc.

And then concludes that they are cakes

• for the purposes of VAT
6

Backing the Truth into a Corner

© Zühlke 2008
Keith Braithwaite

7 August 2008
Slide

Concepts and Definitions

The “Classical” view of Concepts:

• Every category C has a Definition D

• D is a set of predicates

D = {p:Predicate}

• An object o is understood as part of C iff o satisfies D

o∈C ⇔ ∀p∈D, p(o)

• Concepts are categorical
– o∈C ∨ o∉C and nothing else can be said

7

Backing the Truth into a Corner

© Zühlke 2008
Keith Braithwaite

7 August 2008
Slide

The Convenience of Definitions

Technologists find definitions most agreeable:

• They are crisp, unambiguous

• They are compact and yet also universally quantified

• Predicates seem to lead very naturally to:
– relational table signatures
– class members
– rules in a inference engine

8

Backing the Truth into a Corner

© Zühlke 2008
Keith Braithwaite

7 August 2008
Slide

Definitions Force Users To Be “Precise”

Forces the user to think our way

• they have to accommodate our way of thinking

Use of definitions is a power play over our users

• are we are afraid of the fuzziness of the world?

• are we afraid of our (in–)ability to deal with that?

9

Backing the Truth into a Corner

© Zühlke 2008
Keith Braithwaite

7 August 2008
Slide

An Alternative View

After 2300 years or so...

• Eleanor Rosch does experiments

• Just how do people understand the stuff of the world?

She made several discoveries:

1. categories are probabilistic

2. categories have structure

3. categories are fuzzy

4. categories relate to human capabilities
10

Backing the Truth into a Corner

© Zühlke 2008
Keith Braithwaite

7 August 2008
Slide

Categories Have Structure

Rosch describes vertical and horizontal structure

• Some members of a category are better than others

11

Backing the Truth into a Corner

© Zühlke 2008
Keith Braithwaite

7 August 2008
Slide

Categories Have Structure

Rosch describes vertical and horizontal structure

• Some members of a category are better than others

11

Backing the Truth into a Corner

© Zühlke 2008
Keith Braithwaite

7 August 2008
Slide

Categories Have Structure

Rosch describes vertical and horizontal structure

• Some members of a category are better than others

11

Backing the Truth into a Corner

© Zühlke 2008
Keith Braithwaite

7 August 2008
Slide

Birds

12

Backing the Truth into a Corner

© Zühlke 2008
Keith Braithwaite

7 August 2008
Slide

Prototypical Birds

13

Backing the Truth into a Corner

© Zühlke 2008
Keith Braithwaite

7 August 2008
Slide

Structure of “Bird”

14

Backing the Truth into a Corner

© Zühlke 2008
Keith Braithwaite

7 August 2008
Slide

Categories Are Fuzzy

Near the edges, categories can blur into one–another

15

Backing the Truth into a Corner

© Zühlke 2008
Keith Braithwaite

7 August 2008
Slide

Categories Relate to Human Capabilities

Remember the cakes?

Categories are grounded in human experience

• more than physics

16

Backing the Truth into a Corner

© Zühlke 2008
Keith Braithwaite

7 August 2008
Slide

Automated Tests Are...

User/acceptance/functional tests have escaped:

• no longer applied at the the end of development

• no longer primarily about defects

17

Backing the Truth into a Corner

© Zühlke 2008
Keith Braithwaite

7 August 2008
Slide

Automated Tests are (Checked) Examples?

Checked examples metaphor emphasises:

• verification

• concreteness

• explicitness

18

Backing the Truth into a Corner

© Zühlke 2008
Keith Braithwaite

7 August 2008
Slide

Do We Have Any Clues Now About That?

If examples fit the way people think

• using them moves us towards our users

• connects us with their existential state

• corrects the power balance

19

Mark Dalgarno - Attack Of The Clones

© Copyright Software Acumen Limited 2009

Attack of the Clones

Mark Dalgarno
Software Acumen

Email: mark@software-acumen.com
Blog: blog.software-acumen.com

© Copyright Software Acumen Limited 2009

These types of clone

© Copyright Software Acumen Limited 2009

What’s the problem?

 Cloning code increases your code size, this
can make it

– harder to understand,
– slower to build &
– have a larger footprint (expensive in an embedded

setting).

 Cloning code increases your maintenance
effort

– Having to fix bugs in more than once place
– Having to find bugs in more than once place
– Having to add features in more than one place

© Copyright Software Acumen Limited 2009

How big is the problem?

“I am a clone I’m not alone.
Is that the spirit of the age?”

Robert Calvert (1945-1988), (Hawkwind) Spirit of the Age
from the album Quark, Strangeness & Charm (1977
Charisma)

© Copyright Software Acumen Limited 2009

Our recent industrial experience

1.8% 31.9%

Percentage Clones (by LOC)

0

10

20

30

40

50

11 C/C++ projects varying from
10 KLOC to 800 KLOC

© Copyright Software Acumen Limited 2009

The Copy-and-Paste Programming Manifesto

I will not copy and paste
code

See http://tinyurl.com/d5cd26 for further resources
or email mark@software-acumen.com

mailto:mark@software-acumen.com

Guy Bolton-King - Test Your Java With Java

Internal DSLs are easy in Scala

Test your Java code
with Scala

class MustBe(val name: String) {
 def mustEqual(s: String) {
 if (s != name)
 throw new RuntimeException
 (s + " was not equal to " + name)
 }
}

val m = new MustBe("foo")

m.mustEqual("foo")

m mustEqual "foo"

implicit def convertStringToMustBe(s: String) =
 new MustBe(s)

public class Stack<T>
{
 private ArrayList<T> _stack = new ArrayList<T>();

 static class Empty extends RuntimeException {}

 public void push(T x) { _stack.add(x); }

 public T pop() {
 if (_stack.size() == 0)
 throw new Empty();
 return _stack.get(_stack.size() - 1);
 }

 public int size() { return _stack.size(); }

 public boolean empty() { return size() == 0; }
}

public class StackTestJUnit {
 @Test
 public void shouldBeEmptyAfterCreation() {
 Stack<Integer> stack = new Stack<Integer>();
 assertTrue(stack.size() == 0);
 }

 @Test
 public void shouldIncreaseInSizeBy1AfterAPush() {
 Stack<Integer> stack = new Stack<Integer>();
 stack.push(1);
 assertTrue(stack.size() == 1);
 }

 @Test
 public void shouldDecreaseInSizeBy1AfterAPop() {
 Stack<Integer> stack = new Stack<Integer>();
 stack.push(1);
 stack.pop();
 assertTrue(stack.empty());
 }
}

class StackTest extends Suite with Spec with ShouldMatchers {

 describe("a stack") {
 it("should be empty after creation") {
 val stack = new Stack[Int]
 stack should have size 0
 }

 it("should increase in size by 1 after a push") {
 val stack = new Stack[Int]
 stack.push(1)
 stack should have size 1
 }

 it("should decrease in size by 1 after a pop") {
 val stack = new Stack[Int]
 stack.push(1)
 stack.pop()
 stack should be ('empty)
 }
 }
}

object should have length (3)

string should startWith ("Hello")

string should fullyMatch regex ("""(-)?(\d+)(\.\d*)?""")

one should be < (7)

emptySet should be ('empty)

seven should be (6 plusOrMinus 2)

map should contain key (1)

map should contain value ("Howdy")

object Lunar extends Baysick {
 def main(args:Array[String]) = {
 10 PRINT "Welcome to Baysick Lunar Lander v0.9"
 20 LET ('dist := 100)
 30 LET ('v := 1)
 40 LET ('fuel := 1000)
 50 LET ('mass := 1000)

 60 PRINT "You are drifting towards the moon."
 70 PRINT "You must decide how much fuel to burn."
 80 PRINT "To accelerate enter a positive number"
 90 PRINT "To decelerate a negative"

 100 PRINT "Distance " % 'dist % "km, " % "Velocity " % 'v % "km/s, " % "Fuel " % 'fuel
 110 INPUT 'burn
 120 IF ABS('burn) <= 'fuel THEN 150
 130 PRINT "You don't have that much fuel"
 140 GOTO 100
 150 LET ('v := 'v + 'burn * 10 / ('fuel + 'mass))
 160 LET ('fuel := 'fuel - ABS('burn))
 170 LET ('dist := 'dist - 'v)
 180 IF 'dist > 0 THEN 100
 190 PRINT "You have hit the surface"
 200 IF 'v < 3 THEN 240
 210 PRINT "Hit surface too fast (" % 'v % ")km/s"
 220 PRINT "You Crashed!"
 230 GOTO 250
 240 PRINT "Well done"

 250 END

 RUN
 }
}

	Golden rules
	Using WER (example crash)
	Slide 3
	Reading .dmp files with WinDebug
	Capturing post mortem files programmatically
	Debugging exceptions
	gflags
	Slide 8
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

