
  

Javascript : the language

accu2009 conference
25th April 2009

Tony Barrett-Powell  



  

Introduction

● Exploring aspects of the language
● Considering styles

– Procedural
– Object-oriented
– Functional

● Some bad parts of the language along the way
● Some of the tools available



  

Who am I?

● Programmer at Oracle
– Business Intelligence Tools
– C++, Java and Javascript

● ACCU
– Committee member
– Web site editor



  

Motivation

● A lot of moaning about Javascript
– From a strong typing point of view

● Very widely used language
● Suspicion that it is being used from wrong point 

of view
● A way to solve the problem of code that is 

repeated in applications with web front-end



  

A potted history

● Developed at Netscape
– To provide what java didn't
– Called mocha, livescript then javascript

● Copied by Microsoft as jscript
● Standardised in an attempt to regain control

– ECMAscript
– Errors in jscript kept in standard

● New ambitious standard abandoned for 
something less so – now in final draft



  

Basics

● Dynamically typed
● Objects are containers
● Functions are first class entities (lambda)
● Prototype based
● Simple linkage
● Interpreted
● Thread neutral
● Garbage collected



  

Types

● Number
– floats no integer type

● Strings
– immutable, not UTF-16

● Boolean
● Objects
● null and undefined



  

Procedural javascript

● How much javascript is written
● Example:
function add (x, y) {
  return x + y;
}

var a = add(1,2);      // a = 3
var b = add('1','2');  // b = '12'
var c = add('3',3);    // c = '33'



  

Scope

● Limited number of scopes in javascript
● {} is not a scope
● Example:
Function foo () {
  var i = 0;
  {
    var i = 1;
  }
  return i;
}



  

objects

● Javascript is a prototype based language
– (self, Javascript and a few others)
– There are no classes
– Objects are dynamic 

(they can be modified at runtime)
– Containers of name/value pairs
– Objects are created based on other objects 
– Javascript has pseudo-classical features



  

Object creation

● Examples:
var foo = {};

● And the equivalent
var foo = new Object();

● These are created based on the Object object
– Provides minimal methods

● toString() / toLocaleString()
● ValueOf()
● hasOwnProperty() / IsPropertyOf() / 

propertyIsEnumerable()



  

Object augmentation

● Example:
var foo = {};

● Adding a member:
foo.x = 0;
foo['y'] = 1;

● Adding a method:
foo.add = function (x, y) {
  return x + y;
};



  

Object literal

● Instead of augmenting the object it can be 
defined as a literal:

var foo = 
  { x   : 0,
    add : function (x, y) {
            return x + y;
          }
  };

● This is the basis of JSON



  

Object diminution 

● What has been added can be taken away:

delete foo.x;
delete foo['y'];
delete foo.add;



  

pseudo-classical

● The designers of javascript seemed to have 
been uncomfortable with the prototype based 
approach

● They added features that look like class based 
languages:
– new keyword
– Constructor functions
– instanceof operator
– Prototype member of user defined functions

● Not really one or the other



  

A javascript 'class'

● Example:
function Lendable(title) {
  this.title = title;
  return this; // optional
}
Lendable.prototype.getTitle() {
  return this.title; 
};

var myLendable = new 
Lendable('Javascript – The Book');



  

Looking under the covers

myLendable

Lendable.prototype

 prototype

constructor

getTitle()

Lendable

Lendable(title)

new

_proto_

title

Object Object.prototype prototype
constructor

_proto_



  

Issues

● Calling a constructor without new
– this is the global object
– The global object is returned
– No error
– Tools combined with coding style can help

● The object is unlike one produced in a classical 
language
– Data is public



  

Name lookup

● When a method is invoked on myLendable
– It is looked up in the Lendable object
– It is then looked up in the Lendable.prototype object
– And finally in Object.prototype object

● This is called the prototype chain
● A method or member can be added to any of 

these objects at runtime
● Name lookup occurs at the point of invocation



  

Mutating state

● A property can exist in the prototype object
– These are read only from the instance
– Mutation of these properties creates the property in 

the instance
– Deletion of the property in the instance exposes the 

property in the prototype



  

Inheritance

● Given we have classes (of sorts) we should be 
able to support inheritance
– Questionable in a dynamic language

● If it does - it is

– Only needed for code re-use
● Is this enough?
● Is it a good idea at all?

● We'll look at it anyway



  

Pseudo-classical inheritance

● Inheritance isn't straight forward
● We can simulate class inheritance by replacing 

the prototype of a class with an instance of the 
base class:

function Book(isbn, title) {
  ...
}
Book.prototype = new Lendable();



  

Pseudo-classical inheritance

● But
– The constructor attribute is pointing at Lendable
– We have to assign the new prototype before adding 

any methods to the prototype
– We haven't inherited the members

● We can all this by creating a prototype object 
and adding a call in the child's constructor



  

Pseudo-classical inheritance

● So we handle all these with the following code:
function obj() {}
obj.prototype = Lendable.prototype;
Book.prototype = new obj();
Book.prototype.constructor = Book;

● And add a call to the base constructor:
function Book(isbn, title) {
  ...
  Lendable.call(this,title);
}
...



  

Pseudo-classical inheritance

● We can make this a function to reuse it:
extend = function(subClass, baseClass) {
  function inheritance() {}
  inheritance.prototype =
            baseClass.prototype;
  subClass.prototype = 
            new inheritance();
  subClass.prototype.constructor =
            subClass;
  subClass.baseConstructor = baseClass;
  subClass.superClass =
            baseClass.prototype;
}



  

Pseudo-classical inheritance

● And use it like:

Book = function(isbn, title)
{
  Book.baseConstructor.call(this,   
                            title);
  this.isbn = isbn;
}
extend(Book, Lendable);

...



  

Pseudo-classical inheritance
myBook

Lendable.prototype
 prototype

constructor
getTitle()

Lendable

Lendable(title)

new

_proto_

title
isbn

Object Object.prototype prototype
constructor

_proto_

Book

Book(title, isbn)

Book.prototype

getISBN()

 prototype

_proto_

constructor



  

Pseudo-classical

● But still not very classical:
– No data hiding

● Members are public

● We can fix this too, but we need to understand 
closures...



  

Closures

● We can nest functions
● Nested functions

– Can access variables from the outer scope
● Lexical scoping

– Can be referenced beyond the lifetime of the outer 
scope

● Let's look at some code...



  

Closures

● An example closure:
function scope(param1) {
  var var1 = 10;
  function closure(param2) {
    return param1 + var1 + param2;
  }
  return closure;
}

var closure = scope(5);
closure.call(11); // equals 26



  

Closures

● We can also construct closures as a return from 
a factory function:

var closure = function() {
  var var1 = 10;
  return {
    closure: function() {
      return var1;   
    }
  }
}();



  

Closures

● Variables from the scope have value in the 
closure as at the end of the outside scope:
function scope() {
  var var1 = 10;
  function closure() {
    return var1;
  }
  var1 = 21;
  return closure;
}

// closure() returns 21;



  

Private data

● We can use closures to create private data in 
our classes

● If we start with the data:

function Lendable(title) {
  var privateTitle = title;
}

● privateTitle is inaccessible after the constructor 
has exited
– But we can capture it in a closure



  

Private data

● Adding a function:
function Lendable(title) {
  var privateTitle = title;
  this.getTitle = function()
  {
    return privateTitle;
  } 
}

● The only problem is that each instance of 
Lendable gets its own copy of getTitle()



  

Private methods

● In a similar way we can have private methods:
function Lendable(value) {
  this.val = value;
  var that = this;
  function privateCalc() {
    return (that.title % 2);
  }  
  this.getResult = function() {
    return privateCalc();
  } 
}



  

Private methods

● Each instance has a copy of privateCalc() and 
getResult()

● In the private data and private method 
examples, the public method is termed 
'privileged' as it is able to access private data

● The syntax is subtle
● 'that' required for workaround to specification 

issue



  

Classical approach 

● We've looked at javascript's pseudo classical 
nature
– We've got a long way

● constructors, methods, members
● inheritance
● data hiding

– Making it more palatable for programmers from 
classical languages

– Shows javascript adaptability
– But I think there might be a better way



  

prototypes

● Javascript is a prototype based language
● It is dynamically typed

– We don't need type to determine whether an object 
is suitable for use

– We don't need to check if an object is of a particular 
type

– If it does, it is

● We may still want to re-use or share code
● We could do this without using the pseudo-

classical approach



  

Differential inheritance

● As a concept prototype based programming
– Is classless
– Uses cloning and modification of existing objects 

(prototypes) to achieve inheritance
● This generally known as differential inheritance

– This style comes from Self, though there are other 
languages including Javascript



  

Differential Inheritance

● We can achieve this in javascript by simply 
replacing an objects prototype with an instance 
of the parent object
– We did something like this in the pseudo classical 

approach

● This time we use objects not 'classes'
var lendable = {
  'title' : 'Javascript Language';
  'getTitle' : function() 
               {return this.title;}
};



  

Differential Inheritance

● We can define book:
var book = {};
book.prototype = lendable;
// augment book

● This can be codified into a function:
function object(o) {
  function f() {}
  f.prototype = o;
  return f;
}
var book = object(lendable);



  

Differential Inheritance

● This is much simpler than the pseudo classical 
approach
– No need for new anywhere (or to forget)

● There are downsides:
– Can't use instanceof to determine type
– Prototype chain 

● name lookup only works with public names
● Could get long, not so good for performance

– But most javascript applications use the network so this is 
generally moot

– State dependency



  

Another approach

● We don't need to use the prototype chain at all
● Equally valid in a prototype based language as 

differential inheritance
● Like the prototype pattern in the GoF?

– Without the classes of course

● Douglas Crockford calls this parasitic 
inheritance



  

Parasitic inheritance example

● Looking back at Lendable:
function Lendable(title) {
  var lendable = {};
  lendable.title = title;
  lendable.getTitle =
    function {
      return this.title;
    };
  return lendable;
}
var lendable = Lendable();



  

Parasitic inheritance example

● Then book:
function Book(isbn,title) {
  var book = Lendable(title);
  book.isbn = isbn;
  book.getISBN =
    function {
      return this.isbn;
    };
  return book;
}
var book = Book();



  

Parasitic inheritance

● This is more in keeping with the conceptual 
basis of the language

● The new object is everything the parent was 
and more

● No state dependency
● Problem: methods are not shared



  

Parasitic Inheritance

● Is good 
– expect if you want to have a million objects of the 

same 'type'
– Memory usage more than the pseudo-classical 

approach

● We need a hybrid approach for this
– Use a shared prototype with the public methods
– Create the objects with this prototype



  

Summary of OO

● Styles of OO
– Pseudo classical
– Prototype based

● We don't need the class style in Javascript
– Except for class (Java, C++?) programmers

● Parasitic Inheritance possibly more in tune with 
the language



  

Linkage

● All the examples so far have added names to 
the global namespace

● The global namespace is basically a global 
variable
– Linkage through global variable
– Bad for mashups and the like

● Use functions to provide namespaces to stop 
pollution of global namespace



  

Functional

● We know that in javascript functions are first 
class entities
– We've already used them to create closures
– We've returned these closures from functions

● We can pass functions as arguments to other 
functions
– These functions don't need names
– Lamda



  

Functional

● An example from Eloquent JavaScript:
function printArray(a) {
  for (var i=0; i<a.length; i++) {
    print(a[i]);
  }
}
function sumArray(a) {
  var sum = 0;
  for (var i=0; i<a.length; i++) {
    sum += a[i];
  }
  return sum;
}



  

Functional

● In each example the for loop is repeated
– The variation point is the function applied to each 

element

● So we can extract this:
function forEach(a, action) {
  for (var i=0; i<a.length; i++) {
    action(a[i]);
  }
}



  

Functional

● And rewrite the examples:
function printArray(a) {
  forEach(a, print);
}

function sumArray(a) {
  var sum = 0;
  forEach(a, function(number) {
    sum += number;
  });
  return sum;
}



  

Functional

● It doesn't appear to give much advantage for 
these simple examples

● But it does reduce the noise
– no more loop or index

● A function which operates on another function is 
called a higher order function
– Closer to the problem
– Less mechanism

● “More software, less code”



  

Functional

● The forEach function used by sumArray was an 
example of the functional programming reduce
– from Lisp

● Reduce looks like this in javascript:
function reduce(fn, a, base) {
  var s = base;
  for (var i=0; i<a.length; i++) {
    s = fn(s, a[i]);
  }
  return s;
}



  

Functional

● We can write SumArray using it:

function sumArray(a) {
  return reduce(function(s, number) {
             return s + number;
         },
         a, 0);
}

● Even less code



  

Functional

● If there is reduce then there must be map:

function map(fn, a) {
  var ret = [];
  for (var i=0; i<a.length; i++) {
    ret.push(fn(a[i]));
  }
  return ret;
}

● You could assign back to a:  a = fn(a[i]);  

– But that wouldn't be functional
● side effects



  

Functional

● So we can use map to multiply all array entries 
by 2:

function doubleArrayElements(a) {
  return map(function(number) {
            return number * 2;
         },
         a);
}



  

Functional

● What about recursive unnamed functions?
● If we wanted to calculate the fibonacci number 

for each array entry (say for an interview):
function calculateFabonacci(a) {
 return map(function(n) {
        f = arguments.callee;
        var s=0;
        if (n=0) {return s;}
        else if (n=1) {return s+=1;}
        else {return (f(n-1) + f(n-2));}
      },
      a);
}



  

Functional

● From these simple examples we can see the 
ability to reduce code and improve 
expressiveness

● Not bad for a simple language
– Or maybe it is just misunderstood



  

Tools

● A brief look at some tools that help the 
javascript programmer
– editors
– debuggers
– libraries
– testing



  

JSLint

● A tool by Douglas Crockford
● Both a lint and layout checker
● Immediately annoying and useful in equal 

measure
● Helps avoid bad parts of javascript
● JSLintForJava from google allows javscript lint 

to be used from Ant



  

Editors

● Many editors provide highlighting for javascript
● Notable editors

– Eclipse with JSEclipse (used by colleague)
– NetBeans (used by another colleague)
– Scintilla – has good highlighting, folding etc

● No real killer IDE



  

Debuggers

● Mainly browser based:
– Mozilla/Firefox

● Firebug
● Javascript debugger
● Venkman (dormant)

– IE
● Microsoft script debugger (Office and Visual Studio)

– Chrome
● Has one built in (not so good yet)

● Also one for Rhino (Mozilla Rhino debugger)



  

Libraries

● Main libraries:
– Prototype (for dynamic web applications)
– Dojo Toolkit (similar to Prototype)
– X (widgets and more)

● As many AJAX libraries as can be imagined
● Not forgetting:

– GWT (which makes this session a bit redundant)



  

Testing

● Selenium (we use this for system testing)
– Integrates with ant and junit

● Rhinounit (unit testing on Rhino)
– Also integrates with ant and junit

● JSUnit
– Looks good but I've had trouble making it work

● JSNUnit 
– For .NET, but I haven't tried it

● JSCoverage/JSMock



  

Javascript

● Dynamically typed
● Objects are containers
● Lambda (functions are first class entities)
● Prototype based
● Simple linkage
● Interpreted
● Thread neutral
● Garbage collected


