Javascript : the language

accu2009 conference
25" April 2009
Tony Barrett-Powell

Introduction

* Exploring aspects of the language
* Considering styles

- Procedural
— Object-oriented
- Functional

 Some bad parts of the language along the way
« Some of the tools available

Who am |7

 Programmer at Oracle

— Business Intelligence Tools
- C++, Java and Javascript

« ACCU

- Committee member
- Web site editor

Motivation

* A lot of moaning about Javascript
- From a strong typing point of view

* Very widely used language

e Suspicion that it is being used from wrong point
of view

* A way to solve the problem of code that is
repeated in applications with web front-end

A potted history

e Developed at Netscape

- To provide what java didn't

— Called mocha, livescript then javascript
» Copied by Microsoft as jscript
e Standardised in an attempt to regain control

- ECMASscript
— Errors in jscript kept in standard

e New ambitious standard abandoned for
something less so - now in final draft

Basics

 Dynamically typed
* Objects are containers
* Functions are first class entities (lambda)

* Prototype based

e Simple linkage
 |nterpreted

e Thread neutral

» Garbage collected

Types

 Number

- floats no integer type
e Strings

- immutable, not UTF-16
* Boolean

* Objects
 null and undefined

Procedural javascript

« How much javascript is written

e Example:
function add (x, y) {

return x + y;

J

var a = add(1,2); // a = 3
var b = add('1"','2"); // b = "12"
var ¢ = add('3"', 3); // c = "33

Scope

* Limited number of scopes in javascript
* {}is not a scope

 Example:
Function foo () {
var 1 = 0;
{
var 1 = 1;

J

return 1i;

J

objects

« Javascript is a prototype based language

- (self, Javascript and a few others)
- There are no classes

- Objects are dynamic
(they can be modified at runtime)

— Containers of name/value pairs
— Objects are created based on other objects
- Javascript has pseudo-classical features

Object creation

 Examples:
var foo = {};

* And the equivalent
var foo = new Object () ;

* These are created based on the Object object

- Provides minimal methods

* toString() / toLocaleString()
* ValueOf()

* hasOwnProperty() / IsPropertyOf() /
propertylsEnumerable()

Object augmentation

 Example:
var foo = {};

 Adding a member:
foo.x = 0;
fool'y'] = 1;

* Adding a method:

foo.add = function (x, y) {
return x + vy,

by

Object literal

* |nstead of augmenting the object it can be
defined as a literal:

var foo =
{ x : O,
add : function (x, vy)

return x + vy;

}
}

 This is the basis of JSSON

Object diminution

 What has been added can be taken away:

delete foo0.x;
delete fool'y'];
delete foo.add;

pseudo-classical

* The designers of javascript seemed to have
been uncomfortable with the prototype based
approach

* They added features that look like class based
languages:
- new keyword
— Constructor functions
- instanceof operator
- Prototype member of user defined functions

* Not really one or the other

A Javascript 'class’

Example:
function Lendable(title) {

this.title = title;
return this; // optional

}

Lendable.prototype.getTitle () {
return this.title;

by

var myLendable = new
Lendable ('Javascript — The Book');

Looking under the covers

myLendable

title

__proto_

Lendable | EW
—»| Lendable(title)
prototype
constructor —»{ Lendable.prototype |«
getTitle()]
|

__proto_

Object.prototype |«

Object prototypé|
constructor

Issues

» Calling a constructor without new

- this is the global object

— The global object is returned

— No error

— Tools combined with coding style can help

* The object is unlike one produced in a classical
language

— Data is public

Name lookup

 When a method is invoked on mylLendable

- It is looked up in the Lendable object
- It is then looked up in the Lendable.prototype object

— And finally in Object.prototype object
* This is called the prototype chain

* A method or member can be added to any of
these objects at runtime

 Name lookup occurs at the point of invocation

Mutating state

* A property can exist in the prototype object

- These are read only from the instance

- Mutation of these properties creates the property in
the instance

- Deletion of the property in the instance exposes the
property in the prototype

Inheritance

* Given we have classes (of sorts) we should be
able to support inheritance

- Questionable in a dynamic language
e Ifitdoes - itis

- Only needed for code re-use
* |Is this enough?
* Is it a good idea at all?

 We'll look at it anyway

Pseudo-classical inheritance

* Inheritance isn't straight forward

 We can simulate class inheritance by replacing

the prototype of a class with an instance of the
base class:

function Book(isbn, title) {

J
Book.prototype = new Lendable();

Pseudo-classical inheritance

e But

- The constructor attribute is pointing at Lendable

- We have to assign the new prototype before adding
any methods to the prototype

- We haven't inherited the members

 We can all this by creating a prototype object
and adding a call in the child's constructor

Pseudo-classical inheritance

« S0 we handle all these with the following code:

function obj () {}
obj.prototype Lendable.prototype;

Book.prototype = new obj () ;
Book.prototype.constructor = Book;

* And add a call to the base constructor:
function Book(isbn, title) {

Lendable.call (this,title);

Pseudo-classical inheritance

* We can make this a function to reuse it:
extend = function(subClass, baseClass) {
function 1nheritance () {}
inheritance.prototype =
baseClass.prototype;
subClass.prototype =
new 1lnheritance() ;
subClass.prototype.constructor =
subClass;
subClass.baseConstructor = baseClass;
subClass.superClass =
baseClass.prototype;

Pseudo-classical inheritance

* And use it like:

Book = function(isbn, title)
{
Book.baseConstructor.call (this,
title) ;
this.isbn = 1sbn;
}
extend (Book, Lendable);

Pseudo-classical inheritance

Book.prototype

myBook

title
isbn

proto

__proto

Book |}
Book(title, isbn)
prototype
constructor '
getlISBN()
Lendable
Lendable(title)
prototype
constructor

——»| Lendable.prototype |«

getTitle()

Object

proto

constructor

prototypé|

Object.prototype |«

Pseudo-classical

e But still not very classical:
- No data hiding

 Members are public

 We can fix this too, but we need to understand
closures...

Closures

e We can nest functions
 Nested functions

— Can access variables from the outer scope
e Lexical scoping
— Can be referenced beyond the lifetime of the outer
scope

e Let's look at some code...

Closures

 An example closure:
function scope (paraml) {

var varl = 10;
function closure (param2) {
return paraml + varl + param?Z;

J

return closure;

J

var closure = scope(d);
closure.call(1l1l); // equals 26

Closures

e We can also construct closures as a return from
a factory function:

var closure = function () {
var varl = 10;
return {
closure: function () {

return varl;

Closures

* Variables from the scope have value in the

closure as at the end of the outside scope:
function scope () {

var varl = 10;

function closure () {
return varl;

}

varl = 21;

return closure;

J

// closure () returns 21;

Private data

 We can use closures to create private data Iin
our classes

e |f we start with the data:

function Lendable(title) {
var privateTitle = title;

J

* privateTitle is inaccessible after the constructor
has exited

— But we can capture it in a closure

Private data

* Adding a function:
function Lendable(title) {

var privateTitle = title;
this.getTitle = function /()
{
return privateTitle;
}
}

* The only problem is that each instance of
Lendable gets its own copy of getTitle()

Private methods

* |n a similar way we can have private methods:
function Lendable (value) {

this.val = wvalue;

var that = this;

function privateCalc () {
return (that.title % 2);

}

this.getResult = function () {
return privateCalc();

J

Private methods

» Each instance has a copy of privateCalc() and
getResult()

* |n the private data and private method
examples, the public method is termed
'privileged’ as it is able to access private data

 The syntax is subtle

* 'that' required for workaround to specification
Issue

Classical approach

 We've looked at javascript's pseudo classical
nature

- We've got a long way
e constructors, methods, members
* inheritance
* data hiding

- Making it more palatable for programmers from
classical languages

- Shows javascript adaptability
— But | think there might be a better way

prototypes

« Javascript is a prototype based language
* |t is dynamically typed

- We don't need type to determine whether an object
IS suitable for use

- We don't need to check if an object is of a particular
type
- If it does, it is

 We may still want to re-use or share code

 We could do this without using the pseudo-
classical approach

Differential inheritance

e As a concept prototype based programming

- |s classless

- Uses cloning and modification of existing objects
(prototypes) to achieve inheritance
* This generally known as differential inheritance

— This style comes from Self, though there are other
languages including Javascript

Differential Inheritance

 We can achieve this in javascript by simply
replacing an objects prototype with an instance
of the parent object

- We did something like this in the pseudo classical
approach

* This time we use objects not 'classes'
var lendable = {

'title' : '"Javascript Language';
'getTitle' : function|()
{return this.title;}

by

Differential Inheritance

 We can define book:
var book = {};

book.prototype
// augment book

lendable;

 This can be codified into a function:
function object (o) {

function f£() {}
f.prototype = 0;
return £;

}
var book = object (lendable);

Differential Inheritance

* This is much simpler than the pseudo classical
approach

- No need for new anywhere (or to forget)
 There are downsides:

— Can't use instanceof to determine type

- Prototype chain

* name lookup only works with public names

* Could get long, not so good for performance

— But most javascript applications use the network so this is
generally moot

- State dependency

Another approach

 We don't need to use the prototype chain at all

e Equally valid in a prototype based language as
differential inheritance

» Like the prototype pattern in the GoF?

- Without the classes of course

* Douglas Crockford calls this parasitic
inheritance

Parasitic inheritance example

e Looking back at Lendable:
function Lendable(title) {

var lendable = {};
lendable.title = title;
lendable.getTitle =
function {
return this.title;
} s
return lendable;

}
var lendable = Lendable () ;

Parasitic inheritance example

* Then book:

function Book(isbn,title) {

var book = Lendable(title);
book.1sbn = 1sbn;
book.getISBN =

function {

return this.isbn;

b

return book;

J

var book = Book () ;

Parasitic inheritance

* This is more in keeping with the conceptual
basis of the language

 The new object is everything the parent was
and more

* No state dependency
 Problem: methods are not shared

Parasitic Inheritance

 |s good

- expect if you want to have a million objects of the
same 'type'

- Memory usage more than the pseudo-classical
approach

* We need a hybrid approach for this

- Use a shared prototype with the public methods
- Create the objects with this prototype

Summary of OO

« Styles of OO

- Pseudo classical
- Prototype based

 We don't need the class style in Javascript
- Except for class (Java, C++7?) programmers

e Parasitic Inheritance possibly more in tune with
the language

Linkage

* All the examples so far have added names to
the global namespace

* The global namespace is basically a global
variable

— Linkage through global variable
- Bad for mashups and the like

* Use functions to provide namespaces to stop
pollution of global namespace

Functional

* We know that in javascript functions are first
class entities

- We've already used them to create closures

- We've returned these closures from functions

 We can pass functions as arguments to other
functions

- These functions don't need names
- Lamda

Functional

* An example from Eloquent JavaScript:
function printArray(a) {
for (var 1=0; i<a.length; i++) {
print(ali]);
}
}

function sumArray(a) {
var sum = O0;
for (var 1=0; i<a.length; i++) {
sum += al[i];
}

return sum;

Functional

* |n each example the for loop is repeated

— The variation point is the function applied to each
element

e SO we can extract this:
function forEach (a, action) {

for (var 1=0; i<a.length; i++) {
action(ali]) ;

Functional

* And rewrite the examples:
function printArray(a) {
forEach (a, print);

J

function sumArray(a) {
var sum = 0;
forEFEach (a, function (number)
sum += number;

}) s

return sum;

Functional

It doesn't appear to give much advantage for
these simple examples

But it does reduce the noise
- no more loop or index

A function which operates on another function is
called a higher order function

- Closer to the problem
- Less mechanism

“More software, less code”

Functional

* The forEach function used by sumArray was an
example of the functional programming reduce

— from Lisp

 Reduce looks like this in javascript:
function reduce(fn, a, base) {

var s = base;
for (var 1=0; i<a.length; i++) {
s = fn(s, alil);

J

return s;

Functional

* We can write SumArray using it:

function sumArray(a) {
return reduce (function (s, number) {
return s + number;
by
ay 0);
}

e Even less code

Functional

* |f there is reduce then there must be map:

function map (fn, a) {
var ret = [];
for (var 1=0; i<a.length; i++) {
ret.push(fn(al[i]));

return ret;

}
 You could assign backtoa: a = fn(a[il);

— But that wouldn't be functional
 side effects

Functional

SO we can use map to multiply all array entries
by 2:

function doubleArrayElements (a) {
return map (function (number) {
return number * 2;

b

a) ;

Functional

 \What about recursive unnamed functions?

e |f we wanted to calculate the fibonacci number

for each array entry (say for an interview):
function calculateFabonacci (a) {
return map (function(n) {
f = arguments.callee;
var s=0;
1f (n=0) {return s;}
else 1f (n=1) {return s+=1;}
else {return (f(n-1) + f£(n-2));}

a) ;

Functional

 From these simple examples we can see the
ability to reduce code and improve
expressiveness

* Not bad for a simple language
- Or maybe it is just misunderstood

Tools

* A brief look at some tools that help the
javascript programmer

- editors

- debuggers
— libraries

- testing

JSLint

A tool by Douglas Crockford
Both a lint and layout checker

Immediately annoying and useful in equal
measure

Helps avoid bad parts of javascript

JSLintFordava from google allows javscript lint
to be used from Ant

Editors

* Many editors provide highlighting for javascript
* Notable editors

- Eclipse with JSEclipse (used by colleague)

- NetBeans (used by another colleague)

- Scintilla - has good highlighting, folding etc
* No real killer IDE

Debuggers

 Mainly browser based:

- Mozilla/Firefox
* Firebug
 Javascript debugger
* Venkman (dormant)

- |E

» Microsoft script debugger (Office and Visual Studio)
- Chrome

e Has one built in (not so good yet)

* Also one for Rhino (Mozilla Rhino debugger)

Libraries

e Main libraries:

- Prototype (for dynamic web applications)
- Dojo Toolkit (similar to Prototype)
- X (widgets and more)

 As many AJAX libraries as can be imagined
* Not forgetting:

- GWT (which makes this session a bit redundant)

Testing

» Selenium (we use this for system testing)
- Integrates with ant and junit
* Rhinounit (unit testing on Rhino)
— Also integrates with ant and junit
e JSUnit
- Looks good but I've had trouble making it work
e JSNUnit
- For .NET, but | haven't tried it
» JSCoverage/JSMock

Javascript

 Dynamically typed
* Objects are containers
* Lambda (functions are first class entities)

* Prototype based

e Simple linkage
 |nterpreted

e Thread neutral

» Garbage collected

