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Overview 

• what’s special about the Cell?

• Cell SDK and how to build Cell programs

• creating threads using the full power

• communication within the Cell

• using SIMD for great performance



What’s That All About 

• processor clock cycles limits are reached

• many CPUs + shared memory: problems

• contention on accessing memory

• synchronization causes more complex 
CPUs

• few know how to program this correctly



Cell’s Approach

• one chip with many but heterogenous 
CPUs:

• one general purpose CPU for controlling

• many fast CPUs for computing

• memory is not directly shared between 
CPUs

• communication is via fast channels



Cell Architecture

• two different CPUs: PPU and SPU

• 1 × PPU: Power PC for control, I/O, etc.

• 8 × SPU: Synergetic Processing Unit

• simple SIMD CPU for number crunching

• direct memory: no cache, no virtual 
memory



Cell Components

• MIC: memory interface controller

• EIB: element interconnect bus

• I/O interfaces

• PPE: PPU and its connection to MIC, EIB, I/
O

• SPE: SPU and its connection to MIC and EIB
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SPE: Processing Units

• own, limited memory: e.g. 256KB

• no memory protection, e.g. for stack 
overflow

• no cache, no virtual memory, no I/O

• uses asynchronous DMA for 
communication

• 128 bit SIMD processing for everything 



Accessible 
Supercomputer

• employed e.g. in the PlayStation 3

• this has support to run Linux

• caveat: GPU and 2 SPUs are inaccessible

• other OS is intended: no need for a hack

• IBM provides a free SDK



Developing for the Cell

• IBM provides a free SDK for SPU and PPU

• GCC cross-compiler and cross-binutils

• libraries, in particular for SPU access: libspe

• debugger for PPU and SPU

• a Cell system simulator



Linux vs. PlayStation3

• non-destructive: you can still play games!

• use the “Other OS” option to boot Linux

• many PPC distributions work on the PS3

• Yellow Dog Linux is specifically for the Cell

• IBM provides add-ons for the SPU access



Building SPU Programs

• compile objects normally for respective 
CPU:

• PPU: ppu-g++, ppu-gcc, ppu-as, ...

• SPU: spu-g++, spu-gcc, spu-as, ...

• link SPU program: spu-gcc ...

• embed into PPU object: embedspu ...



Build Example
ppu-g++ -W -Wall -g -O2 -c ppe-hello.cpp
spu-g++ -W -Wall -g -O2 -c spe-hello.cpp
spu-gcc -W -Wall -g -O2 -c spe-main.c
spu-gcc -o spe-hello spe-hello.o spe-main.o

embedspu hello spe-hello embed.o

ppu-g++ -o hello ppe-hello.o embed.o -lspe



Running the Program

• cross-compile and run with the simulator

• cross-compile, transfer to Cell, run natively

• compile and run natively on the Cell

• there is a loader for stand-alone SPU 
programs



Creating SPU Threads

• functions from <libspe.h>

• spe_create_thread(grp, addr, arg, env, -1, 0)

• spe_wait(speid, &status, 0)

• SPUs are assigned by the library

• #threads can exceed #SPUs



SPU “hello world”
#include <stdio.h>
int main(unsigned long long id,
          unsigned long long arg,
          unsigned long long env)
{
  printf("id=%llx arg=%llx env=%llx\n",
          id, arg, env);
  return 0;
}



PPU “Hello World”
#include <libspe.h>
extern spe_program_handle_t hello;
int main()
{
  speid_t id = spe_create_thread(0, &hello,
                             0, 0, -1, 0);
  if (id)
    spe_wait(id, 0, 0);
}



C++ PPU “hello world”

  try {
    cool::spe_thread thread(hello);
  }
  catch (std::exception const& ex) {
    std::cerr << "ERR:” << ex.what() << "\n";
  }



SPU Communication

• two ring channels in either direction

• each channel transfers 16 byte at once

• maximum transfer 16kB

• primary transfer facility: DMA

• secondary communication: mailboxes and 
signals

• names always from SPU perspective



Mailbox: Simple Messages

• communicate 32 bit values only

• per SPE one inbox and one outbox

• inbox: 4 elements

• outbox: 1 element

• on SPE exceeding operations will block

• on PPE exceeding operations will not block 



SPU Mailbox 
Operations

• declared in <spu_mfcio.h>

• blocking: spu_read_in_mbox()

• blocking: spu_write_out_mbox(value)

• non-blocking: spu_stat_*_mbox()



PPU Mailbox 
Operations

• declared in <libspe.h>

• all operations on the PPU are non-blocking

• spe_write_in_mbox(speid, value)

• spe_read_out_mbox(speid)

• spe_stat_*_mbox(speid)



SPU Mailbox Example

  uint32_t value = ::spu_read_in_mbox();
  printf("mbox value=%d\n", value);
  for (int i = 2; i <= 4; ++i)
  {
    ::spu_write_out_mbox(i * value);
    printf("wrote value=%d\n", i * value);
  }



PPU Mailbox Example
spe_write_in_mbox(sid, value);
spe_write_in_mbox(sid, value);
cout << "stat="
      << spe_stat_in_mbox(sid) << "\n";
while (spe_stat_out_mbox(sid) < 1) { }
for (int i = 0; i < 5; ++i)
  cout << "out="
        << spe_read_out_mbox(sid) << "\n";



DMA Operations
• addresses 16 bytes aligned

• local address within the SPU

• effective address for the outside address

• size of the transfer

• multiple of 16 bytes

• best size is multiple of 128 bytes

• tag to identify and group transfers



DMA Transfer to SPU

enum { gtag = 1, ptag };

uint32_t src __attribute__((aligned(16)));

mfc_get(&src, argp, sizeof(src), gtag, 0, 0);
mfc_write_tag_mask(1 << gtag);
mfc_read_tag_status_all();



DMA Transfer from 
SPU

uint32_t to[8] __attribute__((aligned(16)));
for (int i = 0; i < 8; ++i)
  to[i] = src + i;

mfc_put(&to, envp, 8*sizeof(to), ptag, 0, 0);
mfc_write_tag_mask(1 << ptag);
mfc_read_tag_status_all();
  



DMA Fences & Barriers

• DMA is unordered in general

• DMA within a tag group can be ordered

• fence: following existing requests

• barrier: follow existing and preceed 
coming request

• read/write operations with fence/barrier



DMA Double-Buffering

get_data(data[0], tag);
for (int index(0); !done; ++index, tag ^= 1) {
  get_data(data[(index + 1) % 2], tag ^= 1);
  wait_for_tag(tag);
  process(data[index]);
  put_data(data[index], tag);
}
wait_for_tag(tag);



DMA for Scattered 
Data

• DMAed data on the local store is contigues

• DMAed data at the other end need not be:

• a list can provide location of the pieces

• each piece is still a multiple of 16 bytes

• used to get more complex data structures 
into the local store



DMA: EA vs. Local 
Store
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More Parallelism: SIMD

• single (same) instruction, multiple data

• more computations with same logic

• on the SPU all operations are on vectors

• SIMD is available on most CPUs



SIMD: Overview

• operations on built-in fixed sized vectors

• vector size on the Cell: 128 bit

• 2 double

• 4 int, float, ...

• 8 short

• 16 char



SIMD Operations

• load vector with scalars

• arithmetic: element-wise + - * / % ...

• comparison: element-wise < > == != ...

• shuffle vector elements

• operations to help with conditions
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SIMD Types and Values 
typedef float fv4 __attribute__((vector(16)));
typedef float fs4[4];
union ufv4 {
  ufv4(fv4 v): vec(v) {}
  ufv4(float f1, float f2, float f3, float f4):
    vec((fv4){f1, f2, f3, f4}) {}
  fv4 vec __attribute__((aligned(16)));
  fs4 val __attribute__((aligned(16)));
};



Scalar Example

int compute(int max, complex<float> c)
{
  int n(0);
  for (complex<float> z(c); n < max
     && z.magnitude() < 4; ++n)
    z = z * z + c;
  return n;
}



Vector Example 
fv4 const zero(0), one(1), four(4);
uv4 rc = uv4(), cond(1);
for (complex<fv4> z(c); cond && max--; )
{
  z = z * z + c;
  cond = z.magnitude() < four;
  rc += select(cond, zero, one);
}



SIMD vs. branches

• comparison creates a vector of results

• use “select” (vec_sel() or spu_sel())

• similar to ternary operator:
result = condition? value1: value2
result = select(condition, value1, value2)

• evaluates both expressions

• select() removes branches from the loop



Data Dependency

• instructions are processed in a pipeline

• steps might need to wait for earlier results

• no branches ⇒ interleave multiple 

iterations
that is loop-unrolling is easy

• branch prediction is even less of a problem



Nicer Programming

• obviously: read-made libraries

• there are already libraries using the SPUs

• generic libraries: somewhat problematic

• data structures not directly shared

• PPU and SPU run different code



Idea for Generics: llvm

• do not encode parallelism into the 
compiler!

• compile to llvm and operate on that

• detect specific entry points

• algorithms marshall between CPUs

• create different translation units for 
CPUs



Conclusion

• two different CPUs: 1 PPU and 8 SPUs

• multi-processing without shared memory

• communication via a fast internal bus

• DMA to transfer lots of memory

• mailboxes for control messages


