"""""""

— Concertant [P

o
s,
-

,,,,,

o

.....
\\\\\

Dr Russel Winder

Partner, Concertant LLP

AN russel.winder@concertant.com

Copyright © 2008 Russel Winder

mailto:russel.winder@concertant.com

Concertant LIP

nctional Programming
atters Not

Dr Russel Winder

Partner, Concertant LLP

russel.winder@concertant.com

Copyright © 2008 Russel Winder 2

mailto:russel.winder@concertant.com

Concertant || P

Aims and Objectives of the Session

* Look at how functional programming has influenced
and continues to influence imperative/object-
oriented programming,.

e Consider why functional programming might have
relevance in a world that is fundamentally
Imperative/object-oriented: show how use of C, C++,
Java, Python, Ruby, Groovy, etc. is improved by using
a more functional programming approach.

* Peek into the increasingly parallel future world and
investigate some of the issues of parallelism that
functional programming approaches may aid.

Copyright © 2008 Russel Winder

Concertant LIP

tructure of the Session

e Brief summary of what functional programming
Is and about some functional programming
languages.

* Look at some sample problems, at the
techniques for solution, and investigate what is
good and what is bad.

This presentation has not been compiled
it is being dynamic bound.

Unfortunately, there are no unit tests for
this presentation, so errors may arise.

Copyright © 2008 Russel Winder

Concertant LIP

ackground

e 1980s — the declarative vs. imperative war:

- Imperative: the existing way, but in need of help.

— Declarative: making the maths of computation
excutable.

* The Players:

- Imperative:

¢ Structured programming.
- Object-oriented programming.
- Declarative

* Logic programming.

 Functional programming.
Copyright © 2008 Russel Winder 5

— Concertant LLP

ne functional programming community has
ways been very defensive about real world
pplicability of functional programming, cf.:

John Hughes (1984) “Why Functional Programming
Matters”.

Copyright © 2008 Russel Winder 6

—_— Concertant LI P

o,
S,
—
——
i
'M...\,c,m
"
——
e

—
S
.

ughes’ Arguments for FP ~_
MM“‘“-N
e Single assignment. * Newton-Raphson.)
* No side effects. Numerical
» Referential - integration
transparency. - differentiation
* Higher order « Game trees:
Kfunctions. - Noughts and crosses
. R{pction composition. (aka tic-tac-toe).
%\

Copyright © 2008 Russel Winder 7

Concertant LIP

at’s FP’s Angle?

e Functions.

* Imperative languages do not take functions
seriously enough.

— Obsession with control of mutable state.

— Obsession with mapping to native machine
architectures.

Copyright © 2008 Russel Winder 8

Concertant LIP

Current Players in the Functional
rogramming Arena

e Scheme - a variant of Lisp.

« OCaml - the object-oriented form of ML and
Caml.

* Haskell — the descendant of ML, Hope, KRC,
Miranda.

3 Erlang - the functional form of Occam.

There is a sort of date ordering here:
Lisp precedes ML, which precedes Miranda.

Occam is definitely not a functional

programming language
Copyright © 2008 Russel Winder

_— Concertant LI P

o,
S,
—
——
i
'M...\,c,m
"
——
e

-
-

S
.

n Expertise ~—

» Expertise is not the number of years of
experience in a given language — though that is
a factor.

* Expertise is strongly related to the number of
different types of language a person is fluent in.

. Learning and being able to use C, C++,
AN Java, Python, Ruby, Groovy, Fortran,
Haskell, Erlang, etc. properly makes
you a better programmer.

Copyright © 2008 Russel Winder 10

Subliminal Advertising

Python for Rookies

\ Sarah Mount, James Shuttleworth and
Russel Winder

Thomson Learning
>

AN
AN
\\

Now called Cengage Learning.

Concertant || P

Copyright © 2008 Russel Winder

11

More Subliminal Advertising

Developing Java Software
\ Third Edition

Russel Winder and Graham Roberts

Wiley

Copyright © 2008 Russel Winder

Concertant || P

12

— Concertant LLP
ti Advertising T~

Developing C++ Software

Second Edition

Russel Winder

Wiley
Only buy this book is you are
studying the history of C++
and how it was taught.
AN

Lecrners of C++ 1iszdd to need this book, |

Copyright © 2008 Russel Winder 13

........

— Concertant [P

""""""

S

'''''
\\\\\

.

e Computation by transformation of data using
function application.

e The features:

— Referential transparency of function calls.
- No side-effects, no mutable data.

i - Functions as first class entities; higher-order
~_ functions.

On this Hughes is 100% correct.

Copyright © 2008 Russel Winder 14

— Concertant LLP

ucial Change of Perspective

* Imperative:

— Procedures and methods undertake some activity
possibly resulting in a return value.

e Functional:

— Data is transformed by the application of
referentially transparent functions.

The realization of algorithm
is handled very differently.

Copyright © 2008 Russel Winder 15

Inguishing Functional
ramming Languages
Strict / Non-strict
Eager / Lazy

Pure / Impure

Copyright © 2008 Russel Winder

Concertant LIP

16

Concertant LIP

onacci Numbers
roduction

* The Fibonacci Sequence is the sequence of
numbers defined by the recurrence relation:

0 n=0
F(n) ={ 1 n=1

Fin—1)+F(n—2) n>1

Copyright © 2008 Russel Winder 17

R

ibonacci Numbers
aive Implementation

functions.

Copyright © 2008 Russel Winder

"""""""

o
s,
-

.

o
=

Concertant LIP

.....
\\\\\

.

e People are generally tempted to implement the
function directly from the definition as recursive

» The following show such implementations in C,
C++, Java, Python, Groovy, Haskell, and Erlang.

18

Concertant

Fibonacci Numbers
Naive Static Imperative

unsigned long long naiveRecursive (const unsigned long long n) {
returnn==0?20:n==1?1: naiveRecursive (n - 1) + naiveRecursive (h-2) ;

}

public static BigInteger naiveRecursive (final long n) {
return
n == 0 ? BigInteger.ZERO :
n == 1?2 BigInteger.ONE : naiveRecursive (n - 1).add (naiveRecursive (n-2)):

}

Concertant

Fibonacci Numbers
Naive Dynamic Imperative

def naiveRecursive (n):
return O if n == 0 else 1 if n == 1 else naiveRecursive (n -1) + naiveRecursive (nh - 2)

def naiveRecursive (n) {
returnn==0?0:n==1?1: naiveRecursive (n -1) + naiveRecursive (n -2)

}

Concertant

Fibonacci Numbers
Naive Functional

naiveRecursivePattern :: Integer -> Integer

naiveRecursivePattern 0 = 0

naiveRecursivePattern1 =1

naiveRecursivePattern n = naiveRecursivePattern (n - 1) + naiveRecursivePattern (n -2)

naiveRecursiveGuarded :: Integer -> Integer
naiveRecursiveGuarded n
|n==0=0
|n==1=1
| n>1 = naiveRecursiveGuarded (n - 1) + naiveRecursiveGuarded (n - 2)

naiveRecursive (0) -> 0 ;

naiveRecursive (1) ->1;

naiveRecursive (N) when N > 1 -> naiveRecursive (N - 1) + naiveRecursive (N -2) ;

naiveRecursive (N) when N < O -> erlang:error ({ fibonacciNaiveRecursiveNegativeArgument ,N}).

Concertant
Fibonacci Numbers

Haskell, Better Pattern Matching
Version?

naiveRecursiveBetterPattern :: Integer -> Integer
naiveRecursiveBetterPattern 0 = 0
naiveRecursiveBetterPattern 1 =1
naiveRecursiveBetterPattern (n+ 2) =
naiveRecursiveBetterPattern (n + 1) + naiveRecursiveBetterPattern n

Copyright © 2008 Russel Winder

22

Concertant

Fibonacci Numbers
A Trick of the Tail (Recursion)

The Genesis of
sophistication. g

tailRecursiveGuarded :: Integer -> Integer
tailRecursiveGuarded n

n< 0 = error "Cannot use negative parameter."
h==0=0
n==1:=1
n>1=doTailRecursionn10
where
doTailRecursion n next result = if n==0

then result
else doTailRecursion (n -1) (next + result) next

Concertant

Fibonacci Numbers
A Trick of the Tail (Recursion)

You can (Tony)
Banks on it.

tailRecursive (0) -> 0 ;
tailRecursive (1) ->1;
tailRecursive (N) when N > O -> iterateTailRecursive (1 ,N,1,0);
tailRecursive (N) when N <O ->
erlang:error ({ fibonacciTailRecursiveNegativeArgument ,N}).

iterateTailRecursive (N, Max , Next , Result) when N > Max -> Result ;
iterateTailRecursive (N, Max , Next , Result) ->
iterateTailRecursive (N + 1, Max , Next + Result , Next) .

Concertant

Fibonacci Number
A Trick of the Tail (Recursion)

During the session Jeremy Gibbons
suggested having these two
versions made public.

tailRecursivePattern :: Integer -> Integer

tailRecursivePattern 0 = 0

tailRecursivePattern1 =1

tailRecursivePattern (n + 2) = doTailRecursion (n+ 2) 0 1 where
doTailRecursion O result next = result
doTailRecursion (n + 1) result next = doTailRecursion n next (result + next)

tuplingTrick :: Integer -> Integer
tuplingTrick n = fst (doDouble n) where
doDouble 0=(0,1)
doDouble (n+1)=let(a,b)=doDoublenin(b,a+b)

Concertant || P

Fibonacci Numbers
Some Observations on Being Naive

f °

The implementations are using a function to
calculate a value in a sequence — should really
just use a data structure to represent a sequence.

Infinite sequences cannot be represented as data
structures, so use a function.

The naive implementation is fundamentally
unsound — O(21) in fact.

MUST use memoization to avoid replication of
calculations if using a recursive implementation.

Copyright © 2008 Russel Winder 26

Concertant

Fibonacci Numbers
Imperatively, Statically Iterative

unsigned long long iterative (const unsigned long long n) {
unsigned long long result = 0 ;
unsigned long long next = 1 ;
for (unsigned long longi=0;i<n; ++i){
unsigned long long temporary = result ;
result = next ;

next += femporary ; public static BigInteger iterative (final long n’) {
} BigInteger result = BigInteger.ZERO :
return result ; BigInteger next = BigInteger.ONE ;
} for (longi=0;i<n;++i){

BigInteger temporary = result ;
result = next ;
next = femporary.add (next) :

}

return result ;

}

Concertant

Fibonacci Numbers
Imperatively, Dynamically Iterative

def iterative (n):
result =0
hext = 1

" def iterative (n){
foriinrange (n):

def result = 0
temporary = result def next =1
result = next for (iin0.<n){

next = temporary + next

def temporary = result
return result

result = next
next += temporary

}

result

}

—— Concertant LLP

o,
S,
—
——
i
'M...\,c,m
"
——
—

ibonacci Numbers T~
ut Recursive Looks Better ~—

e The iterative solution certainly performs faster,
O(n), than the naive recursive solution, O(2n).

e |t would be better to do better.

« Use memoization to build a data structure — get
to O(q)

Copyright © 2008 Russel Winder 29

Concertant

Fibonacci Numbers
Keeping a C++ Memo

unsigned long long memoizedRecursive (const unsigned long long n) {

static std::map<unsigned long long,unsigned long long> memo ;

if (memo.count (n)==0){
switch (n){
case O : memo[0] = O ; break ;
case 1 : memo[1]=1; break;
default : memo[n] = memoizedRecursive (n - 1) + memoizedRecursive (h -2) ; break ;
}

}

return memo([n] .

}

Concertant

Fibonacci Numbers
Keeping a Java Memo

static Map<Long,BigInteger> memo = new HashMap<Long,BigInteger> () ;
static {

memo.put (Ol , BigInteger.ZERQO) ;

memo.put (1l , BigInteger.ONE) ;
}
public static BigInteger memoizedRecursive (final long n') {

if (! memo.containsKey (n)){

memo.put (n , memoizedRecursive (n - 1).add (memoizedRecursive (n-2))):

}

return memo.get (n);

}

Concertant

Fibonacci Numbers
Keeping a Dynamic Memo

memo={0:0,1:1}
def memoizedRecursive (n) :
if not nin memo :
memo[n] = memoizedRecursive (n-1) + memoizedRecursive (n-2)
return memo[n]

def memoizedRecursive (n) {
staticmemo=[0:0,1:1]
if (! memo.containsKey (n)){
memo[n] = memoizedRecursive (n-1) + memoizedRecursive (n-2)
}
memo[n]

}

Concertant

Fibonacci Numbers
Being Lazy but Functional

lazyList :: Integer -> Integer
lazyList n = fibonacciSequence !! fromInteger n
where
fibonacciSequence = 0 : 1: zipWith (+) fibonacciSequence (tail fibonacciSequence)

Lazy is good.

Copyright © 2008 Russel Winder 33

o Concertant LIP

o,
———
—
e
o
Mh“"‘”"«
"
—
—

hhhhh

istorical Factors ~_

* Functional programming was the preserve of the
computer science theory people.

e Functional programming seen as too academic
since it was espoused by academics.

e “Real Programmers use Imperative Languages.”

Copyright © 2008 Russel Winder 34

Concertant LIP

igher Order Functions

* C and C++ have function pointers but this is

nothing like as powerful as the feature of higher
order functions.

 Dynamic languages (e.g. Python, Groovy, Ruby)
have taken on board functions as first class
entities and hence higher order functions.

Copyright © 2008 Russel Winder 35

Concertant LIP

" Python as Anti-Pattern

e Guido van Rossum has publicly stated that
reduce is incomprehensible — summation is the
only use case.

* The functional languages and all the other main
dynamic languages take the opposite view.

e Reduce can be complicated to use, but then so
are higher order functions in general unless you
are careful.

Copyright © 2008 Russel Winder 36

— Concertant LLP

lang — System Programm;@“fhexm

nctional Way \\\

.
e Erlang is a functional programming language,
yet it is used to write telecoms switches!

e Supports parallelism — process (not thread!) is
the primitive unit of parallelism.

Copyright © 2008 Russel Winder 37

Concertant LIP

la — An Interesting Language?

Scala tries to merge object-oriented and
functional programming in a single language.

Scala has integral preconditions.

Copyright © 2008 Russel Winder 38

Concertant || P

C++ Requires a Functional
Approach

*’ C++ encourages a functional programming
| approach with the STL and generic functions.

—

- Learning functional programming helps with
idioms and strategies of C++ programming,.

* C++ requires a functional approach for template
programming.

- Learning functional programming gives you a
handle on doing template metaprogramming,.

Copyright © 2008 Russel Winder

39

Concertant LIP

Summary

* Functional programming may never be the
dominant paradigm.

» Haskell and Erlang are used and being used
more in real applications.

e The way of programming in functional
languages is applicable to other languages, e.qg.

- C, C++, Java as well as Python, Groovy, Ruby,
Perl, etc.

Copyright © 2008 Russel Winder 40

Concertant LIP

Liner

Knowing how to program in a functional
language helps programming in any and all
other languages.

Copyright © 2008 Russel Winder 41

