
Network programming

Roger Orr
OR/2 Ltd

Writing programs in a networked world

Goal of this presentation
 Many current programs use network

communications – whether implicitly or
explicitly

 What does – or should – this change in
the way we write our programs?

 We'll look at a number of questions that
should be asked when using networks

Why use a network?
 There are many reasons for using a net-

work
 Consumer of remote data or services

 Time dependent
 Expensive to copy

 Producer of shared data
 Access to different machines
 Reduce need for physical proximity
 Better performance
 Improved resilience

Why use a network?
 There are different types of network, eg:

 Local LAN
 Probably TCP/IP

 Corporate intranet
 LAN
 WAN

 Internet
 Mobile
 Interplanetary Internet

Why use a network?
 There are also communications not involv-

ing a network
 Leased line
 Serial line
 USB

 Various parts of this talk are also relevant
to these scenarios

What the end user wants
 The end user of the program generally

wants transparent use of the network
 Indistinguishable from an isolated program
 Problems should be sorted out without need-

ing user interaction
 This is not totally achievable...
 Hiding the network at a higher level API

level can also be a mistake

Costs of a network
 The main areas where a network causes

issues are
 Failure modes (connection and remote nodes)
 Troubleshooting
 Limitations of physical laws (latency)
 Security
 Scalability
 Interoperability (standards and versioning)

Costs of a network
 Address these issues up front
 It can be expensive (or even impossible)

to solve them later
 Making a program 'network aware' will

usually affect the interface as well as the
implementation

What can go wrong?
 A stand alone program can be debugged

in isolation, or off-line from a dump file
 Networking adds the communications

channel and independent processes
 Failure modes are more complex
 Partial failure is much more common

 Part of the system is down
 Reduction of performance

 Remote failures may not be in our control

Reducing the pain
 The network interfaces are key to good

support and maintenance
 Capturing network traffic
 Text is easier to read than binary
 Avoiding complicated cross-process state
 Proxies and stubs

 Think about what pieces of the system
should still work without the whole

Reducing the pain
 Consolidated tracing/logging

 Machine/process identification
 Universal timestamps
 Data reduction

 The end user doesn't want to know about
the network, but the support engineer
does

 Can you simplify the configuration?
 How do you test failure modes?

Reducing the pain
 Some examples...

 Grid [save network packet on failure; log client
name and machine; support for local mode]

 I&K [everything is text, so can easily be
saved/replayed; central logger]

Increasing the pain
 An example...

 Binary protocols across a number of servers
 It was not apparent which calls were local and

which ones were remote
 No documented design of call hierarchy
 Errors and exceptions transparently mapped

to local errors, or even silently consumed
 Configuration was sufficiently hard that some

developers couldn't get a local installation to
work

Troubleshooting
 Networks cause problems but do provide

a clean interface to resolve problems
 Network sniffers – for example Wireshark

(aka ethereal), tcpdump.
 Provide a complete trace of the protocol ex-

change at the lowest level
 Fault finding
 Performance analysis

 Can be hard to relate to application activity

Troubleshooting
 Proactive debugging – what is likely to go

wrong and what information will I need?
 Design communication components indepen-

dently from business logic
 'Ping' methods to separate connectivity issues

from application issues
 Ensure target details are logged (both IP ad-

dress + port number)

Limitations of physical laws
 Communication across a network will be

slower than that within a process
 The two main measures are:

 Throughput - the amount of digital data per
time unit that is delivered over a physical or
logical link

 Latency - the time taken for a packet of data
to be sent from one application, travel to, and
be received by another application

Limitations of physical laws
 Overall throughput is (roughly) the same

as the minimum throughput of each part
of the communication pathway.

 Additional throughput can often be bought
 Overall latency is (roughly) the sum of the

individual latencies
 Latency usually can't be reduced much

 Most non-technical people don't really un-
derstand the difference ...

A worked example
Example interface in Java

package multiple;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface Contract extends Remote {
 String read1(String key)
 throws RemoteException;
 String[] readn(String... key)
 throws RemoteException;
}

A worked example
private void testSingle(String[] keys)
 throws RemoteException
{
 String[] result = new String[keys.length];
 for (int i = 0; i != keys.length; ++i) {
 result[i] = remoteObject.read1(keys[i]);
 }
}

private void testMultiple(String[] keys)
 throws RemoteException
{
 String[] result = remoteObject.readn(keys);
}

A worked example
Public class Server implements Contract {

 public String read1(String key) {
 return getData(key);
 }

 public String[] readn(String... key) {
 String[] result = new String[key.length];
 for (int i = 0; i != key.length; ++i) {
 result[i] = getData(key[i]);
 }
 return result;
 }
}

A worked example
 So what's the difference between using

read1 and readn?
 For one object

 A little more work to assemble an array of ob-
jects for readn

 A little more data to pass the network
 For multiple objects

 The loop is written once on the server rather
than once in every client

 Less requests to pass over the network

A worked example
 So what's the difference between using

read1 and readn?
 What if you get an exception?

 read1: only the bad requests fail – other data
is available

 readn: the whole request fails – may need
more work to enforce this for modifications

 Could expand the interface to return an
array of objects with failure status

A worked example

Local host

 java -cp . multiple.Client localhost

Single: 6.18 ms / Multiple: 6.60 ms
Single: 5.16 ms / Multiple: 5.57 ms
...
Single: 4.4 (sd 1.7) / Multiple 4.6 (sd 1.2)

A worked example

LAN connection

 java -cp . multiple.Client gordon

Single 5.7 (sd 7.4) / Multiple 5.3 (sd 3.7)
 What is going on here?
 Note the large standard deviations
 Even for one call little difference between the

'single' and 'multiple' methods

A worked example

A worked example
 The Nagle algorithm

 RFC 896: Congestion Control in IP/TCP Inter-
networks

 Solves the small-packet problem
 (1 byte packet, 40 byte header)
 Often what you want
 When it isn't it can really hit you badly

 Is this the problem?
 Can I do anything about it?

A worked example

Local host – multiple calls

 java -cp . multiple.Client localhost 10

Single: 28.6ms / Multiple: 3.5ms
Single: 26.0ms / Multiple: 3.4ms
...
Single: 28.5 (sd 7) / Multiple 3.7 (sd 1.6)

A worked example

WAN connection

 java -cp . multiple.Client tokyo
Single: 259ms / Multiple: 259ms
 java -cp . multiple.Client tokyo 2
Single: 517ms / Multiple: 259ms
 java -cp . multiple.Client tokyo 20
Single: 5.2s / Multiple: 261ms

Limitations of physical laws
 Will your solution be used with local, LAN

or WAN connections?
 Think about this at design time
 Do some simple arithmetic

 May need to instrument to get data
 Test early using the worst case
 Simulate the worst case

 Buy network simulators
 Use a simple proxy program

Example: database connection
 Reading several thousand records from

the database into cache
 When run remotely the server took over

eight minutes longer to start up
 Running a database remotely would have

been an expensive solution
 JDBC supports ResultSet.setFetchSize

 Using this pretty well restored the local per-
formance remotely

Security
 Accepting input across a network opens

up a number of security problems.
 Malicious attacks – principally on the In-

ternet but increasingly internally too
 Data 'leaks'

 Packet capture
 Data may be cached locally

 Authentication/authorisation

Security
 Security is a negative requirement – it is

hard enough to satisfy the more common
positive requirements

 Security usually conflicts with other goals,
such as supportability

 “There are few, if any, effective strategies
to enhance security after design”
 (Wikipedia)

Security
 Obfuscation is not a good security choice
 Standard mechanisms are generally safer
 Security is as strong as the weakest link
 However, the weakest link varies depend-

ing on access to the system
 “Ownership is root”
 Man in the middle attacks
 Danger of unsecured log files
 System Password changed to 'Friday1'

Security
 Take especial care with user input

 Cater for escaped characters/special strings
 Most database APIs provide automatic ways

to do this – always use them
 Check string lengths in C-style code
 Don't trust client side validation

User Security
 Authentication

 Who is the user
 How can we be sure

 Authorisation
 What is the user allowed to do
 Access control

 Auditing
 Who did what, when

 Non-repudiation
 It was me, I cannot tell a lie

User Security

 Often use LDAP access for company in-
ternal systems

 Database probably already exists
 Tools for many tasks already written
 Relatively cross-platform / cross-language

 Can be harder on the Internet – lack of
common infrastructure

 What might the user do with the data?

Security
 How does the system cope with overuse?

 Denial of service attacks
 'Black Monday' market days
 Run-away success of your product

 Design-in ways to handle such loads
 Couple of points are covered below

 Test the system behaves properly – the
component that fails may not be the one
you expected

Scalability
 Networked programs can give advantages

of increased scalability
 Run processes on separate machines
 Run multiple copies of key processes

 How do we ensure this works?
 Amdahl's law applies here – anything

done serially won't scale
 Additionally there is a cost sending the

work to another process

Scalability
 Identify the bottlenecks

 Little point in writing a complex multi-process
networked application to update a database if
the database is the limiting factor

 Ideal candidate tasks are independent
with small 'surface area' (network packet
size)

 Cache unchanging data locally
 Shared volatile data is more problematic

Scalability
 Establish some benchmarks using a simi-

lar network topology to that proposed
 Decide what is the right behaviour under

high load
 No special treatment (ostrich approach)
 Prioritize tasks
 Coalesce tasks
 Fail certain classes of task

 Web site falling back to text-only mode
 Database allowing simple queries only

Interoperability - standards
 Adopting standards for networking is a

good thing
 Good protocol design is hard - or so it seems
 A lot of corner cases to consider (holes still

exist in NetBIOS, DDE and FIX, for example)
 Lower level code libraries may exist
 Common protocols may already be supported

by protocol analysers

Interoperability - standards
 The Postel dictum:

“Be liberal in what you accept
 and conservative in what you send”

 Try to accept as wide an interpretation of
possible on input

 Try to stick to commonest cases on output

Interoperability - standards
 "The good thing about standards is that

there are so many to choose from"
(A. Tanenbaum)

 Avoid re-inventing the wheel (eg reliable
communication on top of UDP)

 May automatically provide possibilities for
cooperation

 Prefer higher level abstractions allowing
for multiple potential transport protocols

Interoperability - versioning
 Versioning will hit you and can be expen-

sive to identify and hard to solve
 Unless you have explicit control over both

ends you will end up connecting different
versions of the protocol at each end

 A full solution with backward and forward
compatibility is difficult: do you need it?

Interoperability - versioning
 Simplest non solution – no checks
 Can cause strange behaviour – for exam-

ple
 a new parameter is added to a method and

old clients implicitly pass in a null
 unrecognised messages may be ignored by

the server leaving the client in a pending state
 Artifacts from a rebuild do not communicate

with older objects – implicit versioning

Interoperability - versioning
 Simplest solution – check for and reject

any connection with the wrong version
 Prefer explicit up-front checks to avoid

 Delayed failure
 Callback failure

 This style means all programs must be
updated to the correct version simultane-
ously (and reverting can be hard)

 Must remember to change the version

Interoperability - versioning
 Multi version server-side solution – for ex-

ample allow clients to connect using the
current or the previous version

 Allows gradual rollout once the server-
side components are upgraded

 Increased burden on testing and can be
hard to ensure the previous protocol is ac-
tually supported consistently

 Must remember to change the version

Interoperability – versioning
 One useful subset is to add extra releases

that support changes in the protocol (eg
extra fields) but do not require them

 This allows two phase update
 Phase I - all components use the new pro-

tocol version but support both the old and
the new versions

 Phase 2 – change some components to
require the new protocol version

Interoperability example
 The SOAP mustUnderstand attribute
 Allows the new version to include some

mandatory changes and other optional
changes

 Examine the use cases of the interface as
may end up with an interface not actually
providing any useful functionality to older
clients

Interoperability - platforms
 Which network types?

 For example, will this only run on TCP/IP?
 Which Operating System?

 Word size and byte order issues
 Support for some protocols better than others

 Which language?
 Some techniques are inherently multi-lan-

guage (often using text-based protocols)
 Single language solutions may support wider

functionality (object transport, exceptions)

Interoperability - platforms
 Which language?

 Some techniques are inherently multi-lan-
guage (often using text-based protocols) and
some standards have multiple language bind-
ings

 Single language solutions may support wider
functionality

 Local/remote proxying
 Object transport
 Remote class loading
 Transparent handling of exceptions

Conclusion
 Network programming is becoming very

common but it needs to be explicitly
thought about at the design stage

 Failure modes (connection and remote nodes)
 Troubleshooting
 Limitations of physical laws (latency)
 Security
 Scalability

Network pr

Conclusion – questions
 What are the reasons for using a network

in this application?
 What might go wrong?

 What graceful degradation can we offer?
 How easily will it be to find and fix problems?

 What latency and bandwidth is needed?
 How are we handling security?
 What standards could/should we use?
 What versioning model will we support?

Network pr

