
Know Your Units
TDD, DDT, POUTing and GUTs

Kevlin Henney
kevlin@curbralan.com



2

Intent
Clarify the practice(s) of unit testing

Content
Kinds of tests
Testing approach
Good unit tests
Listening to your tests

But first...



3



4



5



6



7



Kinds of Tests



9

Testing is a way of showing that you 
care about something

If a particular quality has value for a 
system, there should be a concrete 
demonstration of that value
Code quality can be demonstrated 
through unit testing, static analysis, 
code reviews, analysing trends in 
defect and change history, etc.



10

Unit testing involves testing the individual 
classes and mechanisms; is the 
responsibility of the application engineer 
who implemented the structure. [...] 
System testing involves testing the system 
as a whole; is the responsibility of the 
quality assurance team.

Grady Booch
Object-Oriented Analysis and Design with Applications, 2nd edition



11

System testing involves testing of the 
software as a whole product

System testing may be a distinct job or 
role, but not necessarily a group

Programmer testing involves testing 
of code by programmers

It is about code-facing tests, i.e., unit 
and integration tests
It is not the testing of programmers!



12

Teams do deliver successfully using manual tests, so this 
can't be considered a critical success factor. However, every 
programmer I've interviewed who once moved to automated 
tests swore never to work without them again. I find this 
nothing short of astonishing.
Their reason has to do with improved quality of life. During 
the week, they revise sections of code knowing they can 
quickly check that they hadn't inadvertently broken 
something along the way. When they get code working on 
Friday, they go home knowing that they will be able on 
Monday to detect whether anyone had broken it over the 
weekend—they simply rerun the tests on Monday morning. 
The tests give them freedom of movement during the day 
and peace of mind at night.

Alistair Cockburn, Crystal Clear



13

Automated tests offer a way to 
reduce the waste of repetitive work

Write code that tests code
However, note that not all kinds of 
tests can be automated

Usability tests require observation and 
monitoring of real usage
Exploratory testing is necessarily a 
manual task



14

A test is not a unit test if:
It talks to the database
It communicates across the network
It touches the file system
It can't run at the same time as any of your other unit 
tests
You have to do special things to your environment 
(such as editing config files) to run it.

Tests that do these things aren't bad. Often they are worth 
writing, and they can be written in a unit test harness. 
However, it is important to be able to separate them from 
true unit tests so that we can keep a set of tests that we 
can run fast whenever we make our changes. 

Michael Feathers, "A Set of Unit Testing Rules"



15

Unit tests are on code that is isolated 
from external dependencies

The outcome is based on the code of 
the test and the code under test

Integration tests involve external 
dependencies

Some portion of a system is necessarily 
not unit testable; the portion that is not 
necessarily so is a measure of coupling



16

It is worth distinguishing between 
tests on functional behaviour...

Written in terms of asserting values and 
interactions in response to use, the 
result of which is either right or wrong

And tests on operational behaviour
More careful experimental design is 
needed because they typically require 
sampling and statistical interpretation



Testing Approach



18

If all you could make was a long-term argument for 
testing, you could forget about it. Some people would do it 
out of a sense of duty or because someone was watching 
over their shoulder. As soon as the attention wavered or 
the pressure increased, no new tests would get written, 
the tests that were written wouldn't be run, and the whole 
thing would fall apart.

Kent Beck

Extreme Programming Explained, 1st edition



19

Test Early.
Test Often.
Test Automatically.

Andrew Hunt and David Thomas

The Pragmatic Programmer



20

A passive approach looks at tests as 
a way of confirming code behaviour

This is Plain Ol' Unit Testing (POUTing)
An active approach also uses 
testing to frame and review design

This is Test-Driven Development (TDD)
A reactive approach introduces 
tests in response to defects

This is Defect-Driven Testing (DDT)



21

Very many people say "TDD" when 
they really mean, "I have good unit 
tests" ("I have GUTs"?) Ron Jeffries 
tried for years to explain what this 
was, but we never got a catch-phrase 
for it, and now TDD is being watered 
down to mean GUTs.

Alistair Cockburn
"The modern programming professional has GUTs"



22

TDD complements other design, 
verification and validation activities

The emphasis is on defining a contract 
for code with behavioural examples 
that act as both specification and 
confirmation
The act of writing tests (i.e., specifying) 
is interleaved with the act of writing the 
target code, offering both qualitative 
and quantitative feedback



23

Because Unit Testing is the plain-Jane 
progenitor of Test Driven Development, it's 
kind of unfair that it doesn't have an 
acronym of its own. After all, it's hard to get 
programmer types to pay attention if they 
don't have some obscure jargon to bandy 
about. [...] I'll borrow from the telco folks 
and call unit testing Plain Old Unit Testing.

Jacob Proffitt, "TDD or POUT"



24

POUT employs testing as a code 
verification tool

Test writing follows code writing when 
the piece of target code is considered 
complete — effective POUTing
assumes sooner rather than later
The emphasis is quantitative and the 
focus is on defect discovery rather than 
design quality or problem clarification



25

DDT involves fixing a defect by first 
adding a test for the defect

DDT uses defects as an opportunity to 
improve coverage and embody 
learning from feedback in code form
This is a normal part of effective TDD 
and POUT practice
However, DDT can also be used on 
legacy code to grow the set of tests



26

Less unit testing dogma.
More unit testing karma.

Alberto Savoia
"The Way of Testivus"



Good Unit Tests



28

I was using xUnit. I was using mock objects. So why did my tests seem 
more like necessary baggage instead of this glorious, enabling 
approach?

In order to resolve this mismatch, I decided to look more closely at 
what was inspiring all the unit-testing euphoria. As I dug deeper, I 
found some major flaws that had been fundamentally undermining my 
approach to unit testing.

The first realization that jumped out at me was that my view of testing 
was simply too “flat.” I looked at the unit-testing landscape and saw 
tools and technologies. The programmer in me made unit testing more 
about applying and exercising frameworks. It was as though I had
essentially reduced my concept of unit testing to the basic mechanics 
of exercising xUnit to verify the behavior of my classes. [...]

In general, my mindset had me thinking far too narrowly about what it 
meant to write good unit tests.

Tod Golding, "Tapping into Testing Nirvana"



29

Poor unit tests lead to poor unit-
testing experiences

Effective testing requires more than 
mastering the syntax of an assertion

It is all too easy to end up with 
monolithic tests

Rambling stream-of-consciousness 
narratives intended for machine 
execution but not human consumption



30

[Test]
public void Test()
{

RecentlyUsedList list = new RecentlyUsedList();
Assert.AreEqual(0, list.Count);
list.Add("Aardvark");
Assert.AreEqual(1, list.Count);
Assert.AreEqual("Aardvark", list[0]);
list.Add("Zebra");
list.Add("Mongoose");
Assert.AreEqual(3, list.Count);
Assert.AreEqual("Mongoose", list[0]);
Assert.AreEqual("Zebra", list[1]);
Assert.AreEqual("Aardvark", list[2]);
list.Add("Aardvark");
Assert.AreEqual(3, list.Count);
Assert.AreEqual("Aardvark", list[0]);
Assert.AreEqual("Mongoose", list[1]);
Assert.AreEqual("Zebra", list[2]);
bool thrown;
try
{

string unreachable = list[3];
thrown = false;

}
catch (ArgumentOutOfRangeException)
{

thrown = true;
}
Assert.IsTrue(thrown);

}

[Test]
public void Test1()
{

RecentlyUsedList list = new RecentlyUsedList();
Assert.AreEqual(0, list.Count);
list.Add("Aardvark");
Assert.AreEqual(1, list.Count);
Assert.AreEqual("Aardvark", list[0]);
list.Add("Zebra");
list.Add("Mongoose");
Assert.AreEqual(3, list.Count);
Assert.AreEqual("Mongoose", list[0]);
Assert.AreEqual("Zebra", list[1]);
Assert.AreEqual("Aardvark", list[2]);

}
[Test]
public void Test2()
{

RecentlyUsedList list = new RecentlyUsedList();
Assert.AreEqual(0, list.Count);
list.Add("Aardvark");
Assert.AreEqual(1, list.Count);
Assert.AreEqual("Aardvark", list[0]);
list.Add("Zebra");
list.Add("Mongoose");
Assert.AreEqual(3, list.Count);
Assert.AreEqual("Mongoose", list[0]);
Assert.AreEqual("Zebra", list[1]);
Assert.AreEqual("Aardvark", list[2]);
list.Add("Aardvark");
Assert.AreEqual(3, list.Count);
Assert.AreEqual("Aardvark", list[0]);
Assert.AreEqual("Mongoose", list[1]);
Assert.AreEqual("Zebra", list[2]);

}
[Test]
public void Test3()
{

RecentlyUsedList list = new RecentlyUsedList();
Assert.AreEqual(0, list.Count);
list Add("Aardvark");



31

A predominantly procedural test 
style is rarely effective

It is based on the notion that "I have a 
function foo, therefore I have one test 
function that tests foo", which does not 
really make sense for object usage
And, in truth, procedural testing has 
never really made sense for for
procedural code either



32

[Test]
public void Constructor()
{

RecentlyUsedList list = new RecentlyUsedList();
Assert.AreEqual(0, list.Count);

}
[Test]
public void Add()
{

RecentlyUsedList list = new RecentlyUsedList();
list.Add("Aardvark");
Assert.AreEqual(1, list.Count);
list.Add("Zebra");
list.Add("Mongoose");
Assert.AreEqual(3, list.Count);
list.Add("Aardvark");
Assert.AreEqual(3, list.Count);

}
[Test]
public void Indexer()
{

RecentlyUsedList list = new RecentlyUsedList();
list.Add("Aardvark");
list.Add("Zebra");
list.Add("Mongoose");
Assert.AreEqual("Mongoose", list[0]);
Assert.AreEqual("Zebra", list[1]);
Assert.AreEqual("Aardvark", list[2]);
list.Add("Aardvark");
Assert.AreEqual("Aardvark", list[0]);
Assert.AreEqual("Mongoose", list[1]);
Assert.AreEqual("Zebra", list[2]);
bool thrown;
try
{

string unreachable = list[3];
thrown = false;

}
catch (ArgumentOutOfRangeException)
{

thrown = true;
}
Assert.IsTrue(thrown);

}

Constructor

Add

Indexer



33

void test_sort()
{

int single[] = { 2 };
quickersort(single, 1);
assert(sorted(single, 1));

int identical[] = { 2, 2, 2 };
quickersort(identical, 3);
assert(sorted(identical, 3));

int ascending[] = { -1, 0, 1 };
quickersort(ascending, 3);
assert(sorted(ascending, 3));

int descending[] = { 1, 0, -1 };
quickersort(descending, 3);
assert(sorted(descending, 3));

int arbitrary[] = { 32, 12, 19, INT_MIN };
quickersort(arbitrary, 4);
assert(sorted(arbitrary, 4));

}

void test_sort()
{

int empty[] = { 2, 1 };
quickersort(empty + 1, 0);
assert(empty[0] == 2);
assert(empty[1] == 1);
int single[] = { 3, 2, 1 };
quickersort(single + 1, 1);
assert(single[0] == 3);
assert(single[1] == 2);
assert(single[2] == 1);
int identical[] = { 3, 2, 2, 2, 1 };
quickersort(identical + 1, 3);
assert(identical[0] == 3);
assert(identical[1] == 2);
assert(identical[2] == 2);
assert(identical[3] == 2);
assert(identical[4] == 1);
int ascending[] = { 2, -1, 0, 1, -2 };
quickersort(ascending + 1, 3);
assert(ascending[0] == 2);
assert(ascending[1] == -1);
assert(ascending[2] == 0);
assert(ascending[3] == 1);
assert(ascending[4] == -2);
int descending[] = { 2, 1, 0, -1, -2 };
quickersort(descending + 1, 3);
assert(descending[0] == 2);
assert(descending[1] == -1);
assert(descending[2] == 0);
assert(descending[3] == 1);
assert(descending[4] == -2);
int arbitrary[] = { 100, 32, 12, 19, INT_MIN, 0 };
quickersort(arbitrary + 1, 4);
assert(arbitrary[0] == 100);
assert(arbitrary[1] == INT_MIN);
assert(arbitrary[2] == 12);
assert(arbitrary[3] == 19);
assert(arbitrary[4] == 32);
assert(arbitrary[5] == 0);

}



34

Everybody knows that TDD stands for Test Driven Development. 
However, people too often concentrate on the words "Test" and 
"Development" and don't consider what the word "Driven" really 
implies. For tests to drive development they must do more than 
just test that code performs its required functionality: they must 
clearly express that required functionality to the reader. That is, 
they must be clear specifications of the required functionality.
Tests that are not written with their role as specifications in mind 
can be very confusing to read. The difficulty in understanding 
what they are testing can greatly reduce the velocity at which a
codebase can be changed.

Nat Pryce and Steve Freeman
"Are Your Tests Really Driving Your Development?"



35

Behavioural tests are based on 
usage scenarios and outcomes

They are purposeful, cutting across and 
combine individual operations and use
Test names should reflect requirements, 
emphasising intention and goals rather 
than mechanics
This style correlates with the idea of use 
cases and user stories in the small



36

[Test]
public void InitialListIsEmpty()
{

RecentlyUsedList list = new RecentlyUsedList();

Assert.AreEqual(0, list.Count);
}
[Test]
public void AdditionOfSingleItemToEmptyListIsRetained()
{

RecentlyUsedList list = new RecentlyUsedList();
list.Add("Aardvark");

Assert.AreEqual(1, list.Count);
Assert.AreEqual("Aardvark", list[0]);

}
[Test]
public void AdditionOfDistinctItemsIsRetainedInStackOrder()
{

RecentlyUsedList list = new RecentlyUsedList();
list.Add("Aardvark");
list.Add("Zebra");
list.Add("Mongoose");

Assert.AreEqual(3, list.Count);
Assert.AreEqual("Mongoose", list[0]);
Assert.AreEqual("Zebra", list[1]);
Assert.AreEqual("Aardvark", list[2]);

}
[Test]
public void DuplicateItemsAreMovedToFrontButNotAdded()
{

RecentlyUsedList list = new RecentlyUsedList();
list.Add("Aardvark");
list.Add("Mongoose");
list.Add("Aardvark");

Assert.AreEqual(2, list.Count);
Assert.AreEqual("Aardvark", list[0]);
Assert.AreEqual("Mongoose", list[1]);

}
[Test, ExpectedException(ExceptionType = typeof(ArgumentOutOfRangeException))]
public void OutOfRangeIndexThrowsException()
{

RecentlyUsedList list = new RecentlyUsedList();
list.Add("Aardvark");
list.Add("Mongoose");
list.Add("Aardvark");
string unreachable = list[3];

}

Addition of single item to 
empty list is retained

Addition of distinct items is 
retained in stack order

Duplicate items are moved to 
front but not added

Out of range index throws 
exception

Initial list is empty



37

void require_that_sorting_nothing_does_not_overrun()
{

int empty[] = { 2, 1 };
quickersort(empty + 1, 0);
assert(empty[0] == 2);
assert(empty[1] == 1);

}
void require_that_sorting_single_value_changes_nothing()
{

int single[] = { 3, 2, 1 };
quickersort(single + 1, 1);
assert(single[0] == 3);
assert(single[1] == 2);
assert(single[2] == 1);

}
void require_that_sorting_identical_value_changes_nothing()
{

int identical[] = { 3, 2, 2, 2, 1 };
quickersort(identical + 1, 3);
assert(identical[0] == 3);
assert(identical[1] == 2);
assert(identical[2] == 2);
assert(identical[3] == 2);
assert(identical[4] == 1);

}
void require_that_sorting_ascending_sequence_changes_nothing()
{

int ascending[] = { 2, -1, 0, 1, -2 };
quickersort(ascending + 1, 3);
assert(ascending[0] == 2);
assert(ascending[1] == -1);
assert(ascending[2] == 0);
assert(ascending[3] == 1);
assert(ascending[4] == -2);

}
void require_that_sorting_descending_sequence_reverses_it()
{

int descending[] = { 2, 1, 0, -1, -2 };
quickersort(descending + 1, 3);
assert(descending[0] == 2);
assert(descending[1] == -1);
assert(descending[2] == 0);
assert(descending[3] == 1);
assert(descending[4] == -2);

}
void require_that_sorting_mixed_sequence_orders_it()
{

int arbitrary[] = { 100, 32, 12, 19, INT_MIN, 0 };
quickersort(arbitrary + 1, 4);
assert(arbitrary[0] == 100);
assert(arbitrary[1] == INT_MIN);
assert(arbitrary[2] == 12);
assert(arbitrary[3] == 19);
assert(arbitrary[4] == 32);
assert(arbitrary[5] == 0);

}

Require that sorting nothing does not overrun

Require that sorting single value changes nothing

Require that sorting identical values changes nothing

Require that sorting ascending sequence changes nothing

Require that sorting descending sequence reverses it

Require that sorting mixed sequence orders it



38

Example-based test cases are easy 
to read and simple to write

They have a linear narrative with a low 
cyclomatic complexity, and are 
therefore less tedious and error prone
Coverage of critical cases is explicit
Additional value coverage can be 
obtained using complementary and 
more exhaustive, data-driven tests



39



40

There are a number of things that 
should appear in tests

Simple cases, because you have to 
start somewhere
Common cases, using equivalence 
partitioning to identify representatives
Boundary cases, testing at and around
Contractual error cases, i.e., test rainy-
day as well as happy-day scenarios



41

There are a number of things that 
should not appear in tests

Do not assert on behaviours that are 
standard for the platform or language 
— the tests should be on your code
Do not assert on implementation 
specifics — a comparison may return 1
but test for > 0 — or incidental 
presentation — spacing, spelling, etc.



42

Refactoring (noun): a change made to the 
internal structure of software to make it 
easier to understand and cheaper to modify 
without changing its observable behavior.

Refactor (verb): to restructure software by 
applying a series of refactorings without 
changing the observable behavior of the 
software.

Martin Fowler, Refactoring



43

public class RecentlyUsedList
{

public RecentlyUsedList()
{

list = new List<string>();
}
public void Add(string newItem)
{

if (list.Contains(newItem))
{

int position = list.IndexOf(newItem);
string existingItem = list[position];
list.RemoveAt(position);
list.Insert(0, existingItem);

}
else
{

list.Insert(0, newItem);
}

}
public int Count
{

get
{

int size = list.Count;
return size;

}
}
public string this[int index]
{

get
{

int position = 0;
foreach (string value in list)
{

if (position == index)
return value;

++position;
}
throw new ArgumentOutOfRangeException();

}
}
private List<string> list;

}

public class RecentlyUsedList
{

public void Add(string newItem)
{

list.Remove(newItem);
list.Add(newItem);

}
public int Count
{

get
{

return list.Count;
}

}
public string this[int index]
{

get
{

return list[Count - index - 1];
}

}
private List<string> list = new List<string>();

}



44

Functional

Operational

Developmental



45

class access_control
{
public:

bool is_locked(const std::basic_string<char> &key) const
{

std::list<std::basic_string<char> >::const_iterator found = std::find(locked.begin(), locked.end(), key);
return found != locked.end();

}
bool lock(const std::basic_string<char> &key)
{

std::list<std::basic_string<char> >::iterator found = std::find(locked.begin(), locked.end(), key);
if(found == locked.end())
{

locked.insert(locked.end(), key);
return true;

}
return false;

}
bool unlock(const std::basic_string<char> &key)
{

std::list<std::basic_string<char> >::iterator found = std::find(locked.begin(), locked.end(), key);
if(found != locked.end())
{

locked.erase(found);
return true;

}
return false;

}
...

private:
std::list<std::basic_string<char> > locked;
...

};

class access_control
{
public:

bool is_locked(const std::basic_string<char> &key) const
{

std::list<std::basic_string<char> >::const_iterator found = std::find(locked.begin(), locked.end(), key);
return found != locked.end();

}
bool lock(const std::basic_string<char> &key)
{

std::list<std::basic_string<char> >::iterator found = std::find(locked.begin(), locked.end(), key);
if(found == locked.end())
{

locked.insert(locked.end(), key);
return true;

}
return false;

}
bool unlock(const std::basic_string<char> &key)
{

std::list<std::basic_string<char> >::iterator found = std::find(locked.begin(), locked.end(), key);
if(found != locked.end())
{

locked.erase(found);
return true;

}
return false;

}
...

private:
std::list<std::basic_string<char> > locked;
...

};



46

class access_control
{
public:

bool is_locked(const std::string &key) const
{

return std::count(locked.begin(), locked.end(), key) != 0;
}
bool lock(const std::string &key)
{

if(is_locked(key))
{

return false;
}
else
{

locked.push_back(key);
return true;

}
}
bool unlock(const std::string &key)
{

const std::size_t old_size = locked.size();
locked.remove(key);
return locked.size() != old_size;

}
...

private:
std::list<std::string> locked;
...

};

class access_control
{
public:

bool is_locked(const std::string &key) const
{

return std::count(locked.begin(), locked.end(), key) != 0;
}
bool lock(const std::string &key)
{

if(is_locked(key))
{

return false;
}
else
{

locked.push_back(key);
return true;

}
}
bool unlock(const std::string &key)
{

const std::size_t old_size = locked.size();
locked.remove(key);
return locked.size() != old_size;

}
...

private:
std::list<std::string> locked;
...

};



47

class access_control
{
public:

bool is_locked(const std::string &key) const
{

return locked.count(key) != 0;
}
bool lock(const std::string &key)
{

return locked.insert(key).second;
}
bool unlock(const std::string &key)
{

return locked.erase(key);
}
...

private:
std::set<std::string> locked;
...

};

class access_control
{
public:

bool is_locked(const std::string &key) const
{

return locked.count(key) != 0;
}
bool lock(const std::string &key)
{

return locked.insert(key).second;
}
bool unlock(const std::string &key)
{

return locked.erase(key);
}
...

private:
std::set<std::string> locked;
...

};



48

Ideally, unit tests are black-box tests
They should focus on interface contract
They should not touch object internals 
or assume control structure in functions

White-box tests can end up testing 
that the code does what it does

They sometimes end up silencing 
opportunities for refactoring, as well as 
undermine attempts at refactoring



Listening to Your Tests



50

Tests and testability offer many forms 
of feedback on code quality

But you need to take care to listen (not 
just hear) and understand what it 
means and how to respond to it
Don't solve symptoms — "Unit testing is 
boring/difficult/impossible, therefore 
don't do unit testing" — identify and 
resolve root causes — "Why is unit 
testing boring/difficult/impossible?"



51

Unit testability is a property of 
loosely coupled code

Inability to unit test a significant portion 
of the code base is an indication of 
dependency problems
If only a small portion of the code is 
unit testable, it is likely that unit testing 
will not appear to be pulling its weight 
in contrast to, say, integration testing



52



53

Unit testing also offers feedback on 
code cohesion, and vice versa

Overly complex behavioural objects 
that are essentially large slabs of 
procedural code
Anaemic, underachieving objects that 
are plain ol' data structures in disguise
Objects that are incompletely 
constructed in need of validation



54



55

[Test]
public void AdditionOfSingleItemToEmptyListIsRetained()
{

RecentlyUsedList list = new RecentlyUsedList();
list.List = new List<string>();
list.Add("Aardvark");

Assert.AreEqual(1, list.List.Count);
Assert.AreEqual("Aardvark", list.List[0]);

}
[Test]
public void AdditionOfDistinctItemsIsRetainedInStackOrder()
{

RecentlyUsedList list = new RecentlyUsedList();
list.List = new List<string>();
list.Add("Aardvark");
list.Add("Zebra");
list.Add("Mongoose");

Assert.AreEqual(3, list.List.Count);
Assert.AreEqual("Mongoose", list.List[0]);
Assert.AreEqual("Zebra", list.List[1]);
Assert.AreEqual("Aardvark", list.List[2]);

}
[Test]
public void DuplicateItemsAreMovedToFrontButNotAdded()
{

RecentlyUsedList list = new RecentlyUsedList();
list.List = new List<string>();
list.Add("Aardvark");
list.Add("Mongoose");
list.Add("Aardvark");

Assert.AreEqual(2, list.List.Count);
Assert.AreEqual("Aardvark", list.List[0]);
Assert.AreEqual("Mongoose", list.List[1]);

}

public class RecentlyUsedList
{

public void Add(string newItem)
{

list.Remove(newItem);
list.Insert(0, newItem);

}
public List<string> List
{

get
{

return list;
}
set
{

list = value;
}

}
private List<string> list;

}



56

Don't ever invite a vampire Don't ever invite a vampire 
into your house, you silly boy. into your house, you silly boy. 

It renders you powerless. It renders you powerless. 



57

Be careful with coverage metrics
Low coverage is always a warning sign
Otherwise, understanding what kind of 
coverage is being discussed is key — is 
coverage according to statement, 
condition, path or value?

And be careful with coverage myths
Without a context of execution, plain 
assertions in code offer no coverage



58

Watch out for misattribution
If you have GUTs, but you fail to meet 
system requirements, the problem lies 
with system testing and managing 
requirements, not with unit testing
If you don't know what to test, then how 
do you know what to code? Not 
knowing how to test is a separate issue 
addressed by learning and practice



59

Don't shoot the messenger
If the bulk of testing occurs late in 
development, it is likely that unit testing 
will be difficult and will offer a poor ROI
If TDD or pre-check-in POUTing is 
adopted for new code, but fewer 
defects are logged than with late 
testing on the old code, that is (1) good 
news and (2) unsurprising




