
Building Lessons

Paul Grenyer
Alan Griffiths

Genesis of Session

➔Paul
➔Who? - Experienced software engineer
➔What? - Set up/fixed build systems as part of

several roles
➔Alan
➔Who? - Process improvement, C++, etc.
➔What? - contract to fix a build system
➔Sounds like the basis of a session!

What do we want from this?

What I want:
Present some experiences

How general is my experience?
What lessons have I missed?

What you want...
Hear an experience report

Compare with your experiences
Share your suggestions

From my ACCU2002 presentation
“reworking the organisation”

No reproducible build process

“...I spent two days experimenting with different version of the JDK, the EJB
container and so fourth before I could get the [small] part of the system I was
working on to compile. (I'd been on the project for three weeks before I'd
worked out how to build and deploy it all.)...

“There was no unit testing or smoke testing regime – and it wasn't even easy to
determine if the result of a check-in would compile. The build broke on a regular
basis – developers were reluctant to synchronise their work with source control
for fear of losing days sorting out the build...

“I never did understand how the change control system was expected to work –
but more on that in a moment...”

Paul's examples: 1st Permie
Job

No build system beyond the IDE
No source control system
No tests
No continuous integration

Paul's examples: 2nd Permie
Job

Green field
Introduced source control
Introduced unit tests
Only used IDE build system
No continuous integration (but the need was
identified)

Paul's examples: 3rd Permie
Job

Had everything already set up
My team was very good at generating scripts
for variants

Paul's examples: 1st Contract

System was in two halves and release build
system needed multiple manual steps
Issues with maintaining IDE and NAnt build
system
Tasked with introducing Continuous Integration
Few unit tests
Coverage and code checking tools almost
impossible to use on existing codebase

Paul's examples: 2nd Contract

Brought into to sort out build system
All projects in separate SVN modules

(bad!), so brought together
Made checking out very irritating

Continuous integration difficult to set up
Needed a system for creating mock databases
for integration testing
Needed automatic deployment
Needed better unit test coverage and mocking

Paul's examples: 4th Permie
Job

Green field project
Set up complete build environment
Using Ant, JUnit, CruiseControl, code checking
and coverage tools

Alan's second example

Contractor employed to “do the build”
Built the system every day
Took all day doing it
When I took over:

Check out and build subsystem 1
Copy some artefacts; edit some header files
Check out and build subsystem 2 – fix errors
Copy some artefacts; edit some header files
Check out and build subsystem 3 – fix errors
Copy build artefacts to a share

Terminology

Revision Control System
Build System
Automated Tests
Unit Tests
Continuous Integration
Code Checking
Test Coverage
Mocking

Common problems

Unclear which source version matches
production binaries
Build process requires multiple manual steps
Testing requires multiple manual steps
Automated testing neglected altogether
Test results open to interpretation
Test coverage measurements neglected
Automatic code checking neglected

Does this sound familiar?

Who's encountered problems like this?
(Show of hands)

Who's dealt with problems like this?
(Show of hands)

Any related issues
(flip chart)

The job

Instead of developing the application – fixing
this build process

On the face of it the build system seems better
than usual – so what can need fixing?

So in this contract the “Users” are developers
We all have some insight into this user domain

The main example

Unclear which source matches production?
NO - release candidate build automates branch
and tag

Build requires multiple manual steps?
NO - Single command to build, test and package

Testing requires multiple manual steps?
NO - Unit and integration tests automated

Test results open to interpretation?
NO - Test failure aborts the build

Technical stuff

Windows only
C++, Python, XLA, C#
Ant (+ Ant contrib) build script

Each component had its own build (devenv,
py2exe, msbuild, ...)

Overnight build on “build box”

The “half day test”

The “half day test” of a project's maturity
“Can you arrive, take a standard developer
workstation and complete the setup and
processes needed to build and test the system
within half a day?”

A good start
after security, intros, finding a desk, etc. I had the
system building and passing tests by the end of
the first day.

So what was the problem?

First stop – talk to the people in charge
I quickly found the first six stakeholders (most of
them managers)
This later expanded to eleven stakeholders
(including four developers)

Document the result of these discussions
Get agreement on the problem
Get agreement on the first steps

Approaching a Solution

Used Wiki to document initial context and
specify the problems
Propose list of solutions and resulting contexts
Prioritise based on benefits, cost and risk
Lots of meetings to involve stakeholders in
context/problem/solution/result

Starting Context

Multiple teams (quants, infrastructure,
applications) contributing code to the “system”
Multiple components split by programming
language - not by function or code ownership
Plans to add additional components to the
system (but “very hard” with existing build
system)
Plans to restructure components of the system
(but “very hard” with existing build system)
Existing build server needs to be retired (out of
warranty), new server needs to be set up

Starting Implementation

An Ant script (spread over multiple files)
encompasses a range of usage for, development,
release and patch release activities. The script
controls a lot of build steps:

✶ Updating working copies
✶ Compiling the code
✶ Running unit and integration tests
✶ Packaging
✶ Logging build output and publishing results

The dependencies between components are
implicit both in the structure of the script and are
spread across the included files

Build Scripting
What are the options?

make
Ant
SCons
Bjam
Maven
Suggestions...

Some issues to consider

Build steps not separable
e.g. always does “svn update”s

Every checkin included in overnight build
And each overnight build is a release candidate

Bad checkins not detected until overnight build
fails
Hard to maintain build script – preventing
restructuring codebase
Each component in a separate Subversion
repository (with its part of the build script)

More issues to consider

This leads to problems:
inconvenient for those working on individual
components as build steps like update, build,
test, package are interdependent
Adding new components involves multiple,
poorly understood, changes to the global script

Possible next steps

Document use cases for the build script (with a view to redevelopment)

Split components upon functional lines

Reduce the scope of build failures to individual components

Enable developers to work against precompiled binaries

Adding additional automated testing

Rework script to:

simplify adding additional components
remove implicit dependencies

Separating out deliverables to reduce the scope of releases

Move to a single Subversion repository

Implement Continuous Integration

First Step
Continuous Integration

Very easy to put Continuous Integration in
place (one day)
Not so easy to get agreement from
management that this matters (three weeks!!)

Concern that developers would “lean” on the
build machine – and “not test checkins properly”
The benefit of knowing the state of the build is
hard to anticipate – until faced with evidence that
it is broken most of the time

Very popular with developers (and, after they'd
seen it in practice, the managers)

Continuous Integration
What are the options?

CruiseControl
http://cruisecontrol.sourceforge.net/

Build-o-matic
http://build-o-matic.sourceforge.net/

CruiseControl.net
http://cruisecontrol.sourceforge.net/

Suggestions...

http://cruisecontrol.sourceforge.net/
http://build-o-matic.sourceforge.net/
http://cruisecontrol.sourceforge.net/

Second Step
Rework Build System

Reduce coupling so that:
Easy to add new components
Components can be build in isolation or
combination
Build tasks (clean, update, build, test, package)
can be run in isolation or combination

Difficult to validate “Legacy Code”
Original script “one big lump” with no tests
Full build cycle time consuming

Second Step
Reworking a build system

Irony: changing the build system led me to...
...run lots of manual tests
...whose results needed careful interpretation

Ant properties present similar problems to
global variables
Hard to isolate build steps to test
Build results not repeatable as binaries contain
timestamps
Any suggestions?

Third Step
New Release Build Server

Add a “release build” process to CruiseControl
server

Ran in parallel to legacy build server
Again lots of manual checking

Final switchover to the new build scripts
Switch off legacy build server

Fourth Step
Patch Builds

a manual process on the old build machine
Involved working with old versions of parts of
the build script (some before I started)
Lots of scenarios for releasing subsets of the
components
Required to work on old build machine for
validation

Fifth Step
Dependency Management

The earlier changes controlled the build order
explicitly – by looping through a master list of
components
A better approach is to specify dependencies
infer the build order

Dependency Management
What are the options?

A tool that does this is Apache Ivy
It also provides a repository for build products
And integrates well with Ant

Maven
Seemed too Java-centric

Vesta
Language independent but based on NFS, no Ant
integration

A bit about Ivy

Uses explicit dependencies
Determines build order
Versioned storage & retrieval of artefacts

<ivy-module version="1.0">
 <info organisation="Octopull" module="branch23"/>
 <publications>
 <artifact name="branch23" type="obj"/>
 <artifact name="branch23" ext="h" type="include"/>
 </publications>

 <dependencies>
 <dependency name="root2" rev="latest.integration" />
 <dependency name="root3" rev="latest.integration" />
 </dependencies>
</ivy-module>

The Setup

Repository location usage comment

local

integration

release

part of each work
area

storing locally build
artefacts

there could be several
work areas on a PC

shared on build
server

storing recent (last
few days)

integration versions

network fileshare

storing release
candidates,

releases and
patched releases

replaces previous
fileshare as archive

What happened?

CI delivered early
Discovered failed earlier attempt

Build system rewritten in Python
But never adopted

Refactored build system
made adding components easy...
...and gave separate targets for clean, update,
build, unit-test, integration-test and package

Dependency management
Facilitates splitting components

The “TODO” list again...

Document use cases for the build script (with a view to redevelopment)

Split components upon functional lines

Reduce the scope of build failures to individual components

Enable developers to work against released binaries

Adding additional testing

Rework script to:

simplify adding additional components
remove implicit dependencies

Separating out deliverables to reduce the scope of releases

Move to a single Subversion repository

Implement Continuous Integration

Halfway?

Build still monolithic
Have to build all components (not just those
being worked on) – but as artefacts are published
to an Ivy repository this is now easy to change

Dependencies managed
was implicit in structure of build script, became a
shared list giving build order, now deduced from
explicit dependencies for each component

Components need splitting and restructuring
But the facilities are now available and
documented

The End

mailto:alan@octopull.demon.co.uk

