
1

Practical Solutions to Five
Agile Myths

James O. Coplien

Gertud & Cope, Mørdrup, Denmark
Associate, Camp Scrum, Stora Nyteboda, Sweden

G&C

These notes created for Better Software Agile 2007, 5 December 2007.
Copyright ©2007 by James O. Coplien. All rights reserved.

60 minutes. Shoot for 20 slides at 3 minutes each.

The results are in ... Many ideas in the Agile canon and folklore can actually
decrease your velocity or can slowly poison your code. Other contemporary
fads have well-known pitfalls that have been forgotten since their last round of
popularity. In this talk I look at five of these common practices, why they are
harmful, and how to avoid their pitfalls:

TDD: Use lightweight architecture and an appropriate scope of testing to
avoid architecture rot, high test maintenance cost, and usability problems.
YAGNI: Use Case Slices and lightweight architecture can help avoid being
blind-sided
On-Site Customer: Add a product owner to avoid burning out both the
customer and the team.
User Stories: Instead of deferring detailed scenario development to your
development during TDD, use Use Cases to bring the analysis out to the
person who matters: the market constituency
Domain-Specific Languages: Take the value from the analysis and run with it;
sometimes, building a domain engineering environment buys you only cost
and headaches

These remedies work well with each other.

2

5 December 2007 Coplien — Five Agile Solutions 2G&C

What is “Agile”?

• We are uncovering better ways of developing software by doing it
and helping others do it. Through this work we have come to value:
 Individuals and interactions over processes and tools
 Working software over comprehensive documentation
 Customer collaboration over contract negotiation
 Responding to change over following a plan

• That is, while there is value in the items on the right, we value the
items on the left more.

• James Grenning
• Jim Highsmith
• Andrew Hunt
• Ron Jeffries
• Jon Kern
• Brian Marick

• Robert Cecil Martin
• Steve Mellor
• Ken Schwaber
• Jeff Sutherland
• Dave Thomas

• Kent Beck
• Mike Beedle
• Arie van Bennekun
• Alistair Cockburn
• Ward Cunningham
• Martin Fowler

© 2001, the above authors
this declaration may be freely copied in any form,
but only in its entirety through this notice.

This slide offers the “official” definition of Agile. It is a well-considered and
valuable set of considerations with wide public appeal. It is this sense of Agile,
rather than any single manifestation of it, that underlies this talk.
I am an advocate of Agile development as defined in this way.

3

5 December 2007 Coplien — Five Agile Solutions 3G&C

Five Agile Myths

• On-Site Customer
• User Stories
• TDD
• YAGNI
• Domain-Specific Languages (DSLs)

In this talk I’ll talk about five myths commonly associated with Agile
development. None of these derive directly from the Agile Manifesto; and, in
fact, the Manifesto is a brilliant work, and Agile development is in general a
great perspective on development. However, some practitioners have found
superficial ties from their favorite practices to the Agile values and have
pushed them forward as though they were the essence of Agile. In some sense,
these practices regrettably have become the core Agile practices. Some of them
go against age-old wisdom — and recent experience and some research points
to the wisdom in the age-old wisdom.
Here we focus on only five of what is certainly a larger number of myths
associated with Agile development: On-Site Customer, the replacement of Use
Cases with User Stories; replace of good design methods (and sometimes
testing approaches) with TDD; the replacement of good architecture with the
YAGNI principle; and the recent resurgence of domain-specific languages. We
will explore each of these in turn and, for each, to provide a solution for the
misguided pursuit of these practices.

4

5 December 2007 Coplien — Five Agile Solutions 4G&C

On-Site Customer Problems

• Customers are one small part of one constituency:
where are domain experts, suppliers, other
stakeholders?

• Difficult to manage multiple on-site customers; but
it’s suicide to have only one customer

• Contextual Design: Observe the customer in their
environment rather than bringing the customer to
the developers!

• On-site customer burns out the team because of
“retreat and commit” [Bell & Woit]

• On-site customer burns out the customer [Martin,
Biddle & Noble]

It seems to be an heresy to say not to do customer-centric development.
However, having customers talk directly to engineers leads to the retreat-and-
commit problem. A customer will determine their minimum agreement criteria
and then will ask for more. If the vendor says yes, then the customer is happy.
If the vendor says no, then the customer can look good by backing down and
asking for less—but still as much as needed. Bell and Woit argue that this
problem is particularly difficult when it involves developers who have a
personal stake in the accomplishment (their code solves the problem), and they
over-commit. That results in missed schedules and burnout. Angela Martin of
Wellington notes both that the on-site customer practice is not sustainable,and
that it leads to customer burnout. Both of these results are empirical. Detractors
say this never happens in an XP environment where trust is complete and
where there are no gains, but most projects are not ready for so Utopian a
vision. And empirical data contradict that notion.
Contextual Design by Beyer and Holtzblatt advises against bringing the
customer to the developer. It’s crucial to observe users and customers in their
environment. Customers might have an on-site developer, but not vice versa.
Citation: Bell & Woit, “Integration of Social-Psychological Influence
Techniques into the XP Negotiation Process”, unpublished research. Cited
with permission (verbal permission obtained from Kathy Bell on 12 September
2006).
Citation: Martin, Angela, R. Biddle and J. Noble. The XP Customer Role in
Practice: Three Case Studies. Proceedings of the Second Agile Development
Conference, 2004.
Citation: Martin, Angela. Exploring the XP Customer Role - Part II.
Proceedings of the Fifth International Conference on eXtreme Programming
and Agile Processes in Software Engineering, Jutta Eckstein and Hubert
Baumeister, eds., 2004.
Citation: Hugh Beyer & Karen Holtzblatt, “Contextual Design”. Morgan-
Kauffman, 1998.

5

5 December 2007 Coplien — Five Agile Solutions 5G&C

Remedies against On-Site
Customer

 Add a Product Owner to avoid burning out
both the customer and the team

 Understand the breadth of your customer
domain: success comes from support for
multiple customers

 Be sure to engage all consistencies,
bringing them together to understand
dependencies between them

 The on-site customer is not an oracle

To solve these problems, take a clue from Scrum: Add a Product Owner as a
buffer between the customer and the developer. This will temper deliberations
and add reason to the feedback loop, instead of driving development with the
“desire to please” that developers commit themselves to as part of retreat-and-
commit. It will create a communication context that avoids burnout both of the
customer and of the developer.
Furthermore, you need to broaden constituency engagement to go beyond a
single customer to a single customer. That’s how you become profitable in
software: to capitalize on your investment many times.
Furthermore, recognize not only that you have stakeholders beyond your
customer, but that there are sources of information, help and insight beyond the
customer. The on-site customer is not an oracle, but a source to consult.

6

5 December 2007 Coplien — Five Agile Solutions 6G&C

What are the problems with
User Stories?

• User stories are a promise for a future
discussion between developer and customer
 Initially developed as “stories” by Alistair

Cockburn as an artifact not designed to survive
into development

 Name was taken by XPers and stripped of its
story nature: they are just feature titles

 XP user stories make the developer dependent
on On-Site Customer

• Inadequate for deriving system tests
• Only half of the context: you also need

domain knowledge, business rules, etc.

A User Story is defined as a promise for a future discussion between a
developer and a customer. It is not a Use Case: a Use Case is a collection of
possible scenarios between a system and its user, together with pre-conditions,
post-conditions, triggers, and optionally business rules and other contextual
elements that delimit the design. A User Story is just the name of a feature; it
conveys little information. A Use Case is powerful enough to drive the
authoring of code and tests; a User Story is not.
Historically, the term “User Story” was originally used by Alistair Cockburn to
designate a story to get development started. It was a lightweight starting point
not designed to survive into development. The term and concept was adapted
by XP — which subsequently threw out the “story” part, leaving only a title.
Without Use Cases, the developer is left to depend on an at-hand customer
(hence its inclusion in XP).
User Stories supposedly drive TDD: the source of design in XP. However,
even Use Cases are only half the story: you need deep domain knowledge to
derive good classes. More on that later.

7

5 December 2007 Coplien — Five Agile Solutions 7G&C

User Stories Use Cases

 User Stories: Instead of deferring detailed
scenario development to your development
during TDD, use Use Cases to bring the
analysis out to the person who matters: the
market constituency
 Test writing and Development can be done in

parallel
 Can do Use Cases incrementally

 Supplement User Stories with domain
analysis or other architectural input

Instead of User Stories, use good old fashioned Use Cases. They convey
possible scenarios to the extent that they can drive both development and
system testing; test development and code development can be done in
parallel. Use Use Cases to capture constituency concerns in an evolving record
of needs.
You can do Use Cases incrementally: flesh out what you will need for the next
release or next few releases. The more Use Cases you can cover, the more
feature interactions you will discover, and you will minimize unnecessary
rework and refactoring.
Supplement the “what the system does” part of your requirements acquisition
with “what the system is” knowledge. We’ll talk more about this during our
dissection of TDD.

8

5 December 2007 Coplien — Five Agile Solutions 8G&C

What is the problem with
TDD?

• TDD means that the design comes from the
tests

• TDD creates a procedural architecture
 Findings supported by research by Siniaalto and

Abrahamsson, Comparative Case Study on the Effect of
Test-Driven Development on Program Design and Test
Coverage, ESEM 2007

 Another one: Siniaalto and Abrahamsson, Does Test-Driven
Development Improve the Program Code? Alarming results
from a Comparative Case Study, Cee-Set 2007

 Procedural architecture in turn weakens OO architecture as
well as mapping to deep domain concepts

 That in turn destroys usability and maintainability

TDD (and closely related TDD) is a design method whereby the tests are
written before the code; code is completed to the end of making the tests pass.
In TDD, the design comes from the coder’s response to the tests. TDD
advocates insist that you should put all of your eggs in the test development
basket.
However, most JUnit tests — or any executable tests — focus on “what the
system does” as we discussed above regarding User Stories. That sounds like
the old days of FORTRAN when procedures were king. That is no longer true
in today’s interactive systems; to support a good GUI, you need an object
model that maps the user’s conceptual model of the workspace. TDD
empirically weakens your architecture, as found in research by Siniaalto.
Furthermore, this procedural focus destroys maintainability (that is essentially
the Siniaalto study) and in fact undermines refactoring.
Even worse, the lack of a good OO architecture seriously undermines system
usability, as we will discuss in the upcoming slides.
Cite: Siniaalto and Abrahamsson, Comparative Case Study on the Effect of
Test-Driven Development on Program Design and Test Coverage, ESEM
2007.
Cite: Siniaalto and Abrahamsson, Does Test-Driven Development Improve the
Program Code? Alarming results from a Comparative Case Study. Proceedings
of Cee-Set 2007, 10 - 12 October, 2007, Poznan, Poland.

9

5 December 2007 Coplien — Five Agile Solutions 9G&C

Laurel’s Paradox

Person

Interface

Computer

The thought bubbles and
their contents are
considered part of the
interface (Laurel, p. 13)

The interface between user and program is a complex thing. It includes, for
example, corporate policies (a policy stipulating that all time sheet hours be
filled out, whether billable or not, is itself part of the interface). The interface
must unify the assumptions of both the user and programmer.
A user always visualizes their business domain in terms of some concepts and
objects, and quickly projects that understanding onto the program. In a good
program, these two structures are aligned. But they can be aligned only if the
programmer has properly captured that domain model. Such a model rarely
comes from Use Cases; instead, it comes from domain knowledge.
Citation: Laurel, Brenda. Computers as Theatre. Addison-Wesley: 1993, p. 13.

10

5 December 2007 Coplien — Five Agile Solutions 10G&C

Laurel’s Paradox: Recursion

Person

Interface

Computer

If there is any mismatch between the user expectation of the information
model, and what it actually is, you get cognitive dissonance. The user
compensates by trying to figure out how the programmer actually modeled the
domain in a futile attempt to coax the program into proper behavior. Similarly,
the programmer may try to anticipate the user’s interaction with his or her
creations rather than drawing on the deep domain model, and that complicates
the interface by introducing inconsistencies. It is important to have some kind
of a “fixed point” to bring these two worlds together.
Ever try to place a picture in the middle of some text using your favorite word
processor, and wonder why you couldn’t make it go where you wanted it?
If the design is driven by Use Cases, or by tests that reflect these Use Cases,
the programmer will create a design — driven by tests — that reflects a
structure different than that in the user’s conceptual model of the workflow.

Citation: Laurel, Brenda. Computers as Theatre. Addison-Wesley: 1993, p. 13.

11

5 December 2007 Coplien — Five Agile Solutions 11G&C

Banking Example

• Savings account: let’s do a User Story
 Deposit
 Withdraw
 Inquire Balance

• So: is SavingsAccount an object?
• In real banking systems, there is no
SavingsAccount object

• The domain model indicates an audit trail
that is the source of the class structure

• A savings account is a role that performs a
traversal of transactions in the audit trail

As another example of how tests and user stories fail to drive the programmer
to a good design, consider the creation of a simple banking system. From the
user perspective, the system is a collection of accounts with simple user
operations such as depositing money, withdrawing funds, and inquiring the
balance. The question arises: is SavingsAccount an object?
The answer is a a bit complex, but in a good architecture, SavingsAccount
would be only a role at the design level and would perhaps be a Java interface
in the code. The real object is an audit trail, and the savings account is just a
number at any given time that is a sum over some transactions in that audit
trail.
In short, TDD can’t live up to the needs of design in this example. The
problem generalizes, and broad experience suggests that TDD leads to major
rework after about the third sprint.

12

5 December 2007 Coplien — Five Agile Solutions 12G&C

The Remedy against TDD :
Lightweight Architecture

• TDD: Use lightweight architecture
instead
 Avoid architecture rot
 Reduced test maintenance cost
 Reduce usability problems

• Don’t forget a system testing program
driven by Use Cases

The solution is to use lightweight architecture up front instead of driving the
design with TDD. Scope the project well and design domain objects to that
business scope. A good domain/architecture basis can avoid many problems of
architecture rot, of the test maintenance cost that comes from the high number
of tests at the class level that depend on details rather than long-term domain
concerns, and of usability. It can help restore the direct manipulation metaphor.
As for testing: don’t confuse TDD with a testing program. Put a dutiful testing
program in place using good black-box testing techniques.
Cite: Gertrud Bjørnvig, Jim Coplien, and Neil Harrison. The Evil of TDD.
Better Software Magazine, November 2007 and December 2007.

13

In our idyllic view of the requirements world, we believe we can listen to what the
customer says and use that to achieve truth and beauty.

14

The problem is that the customer doesn’t always know what they know -- even when
the *do* know it! Beneath the obvious dynamics of Use Cases (we prefer to use Use
Cases, Use Scenarios or narratives over XP-style User Stories, which are nothing
more than a promise for a future conversation between the customer and developer)
we find tacit domain knowledge. Much software structure will follow the structure of
this knowledge. And that structure doesn’t come from Use Cases.

15

5 December 2007 Coplien — Five Agile Solutions 15G&C

YAGNI Problems

• It’s like accusing a roofer of anticipating the
long-off rainy season, or removing utility
passages from an office building

• We become distracted by the User Story of
the moment

• A YAGNI mentality leaves no room for
architecture, and there is commonly a
crash-and-burn in the third sprint

• Refactoring promises to accommodate later
changes, but true refactoring doesn’t work
across class hierarchies

Saying YAGNI is like pleading ignorance. Most YAGNI is an attempt to
pretend that we don’t know things that we actually know. When we build a
house we don’t wait until it rains to build a roof, nor wait until there is a new
telecom technology to put in utility passages. We think ahead, and we think
ahead in terms of the needs of the domain. Good anticipation is the key of
good business success. We should capture that anticipation in our architecture.
Of course, if we are distracted by the User Story of the moment, we will build
a structure that doesn’t evolve well. And refactoring can’t save us if the missed
concept straddles class categories. We have had extensive experience with this
problem in some of our own XP systems in Nordija.

16

5 December 2007 Coplien — Five Agile Solutions 16G&C

Remedies against YAGNI

 Use Case Slices and lightweight
architecture can help avoid being
blind-sided
 A layer of abstract base classes is enough
 Add lightweight documentation
 Just enough to get you into your first

sprint
 Give yourself credit to anticipate

To avoid this problems, give yourself credit to anticipate — if you are steeped
in domain expertise and are in contact with domain experts. Capture the
domain knowledge in a lightweight architecture consisting of lightweight base
classes and some lightweight documentation—all within the Agile values.

17

5 December 2007 Coplien — Five Agile Solutions 17G&C

Pay now or pay later

• Keep up-front system design short
• But not too short

 “Get a few people together and spend a few minutes sketching out the design. Ten
minutes is ideal—half an hour should be the most time you spend to do this. After that,
the best thing to do is to let the code participate in the design session—move to the
machine and start typing in code” - Ron Jeffries et al. XP Installed, Addison-Wesley,
©2000, p. 70.

• About a week — enough to start the first sprint

Analysis First Sprint

A
B
C

Second Sprint

D
E
F

Third Sprint

G
H
I
J

First Sprint

A
B
C

Second Sprint

D
E
F

Third Sprint

G
H
I

Fourth Sprint

J
K
L

First to Market

First to Market
with Feature J

A - J

A - I

Second, third to market are often more successful
than first to market

Keep your up-front design short -- about one sprint, if you can afford it. At the
end of that sprint, have something that you can evaluate: CRC cards that you
can “execute,” or a code framework that compiles and that can demonstrate
basic sanity. Having that little bit of structure up front will pay off later. The
amount of time you spend may depend on your business and domain; in
mature domains, or very high-reliability domains such as aerospace, domain
knowledge abounds,and takes time to capture. For new accounting techniques
related to tax liability for a certain law, there is less prior art to build on.
We have found that many XP projects re-do their architecture within the first
three months. That costs time--often, an entire month with no new features,
and only with refactoring. That is a month lost to the competition. If every
hour you spend doing analysis up front results in more than one hour of
savings in refactoring, then the front-end work will eventually be worth it.
Popular industry experience suggests that you catch up within three releases
(Biggerstaff and Tracz).
Further, industry experience suggests that you can learn much from your
competition. Being first to market is hard, and does not correlate strongly to
long-term success. It is much better to be second or third to market.

Cite for second to market: "Has Apple Hit the Right Disruptive Notes?"
Strategy and Innovation, Vol. 3, No. 4, July/August 2005, as Apple did with
iTunes, iMovie, and Garage Band.

18

5 December 2007 Coplien — Five Agile Solutions 18G&C

How XP links bad practices

User-Story
Design
Capture

On-Site
Customer

Test-Driven
Development YAGNI

Architecture
Decay

No early
Test results

Project
Burnout

So far we have looked at four XP practices for which there is a strong litany of
trouble. This model shows how these practices build on each other. Early XP
underscored these these interdependencies as an argument for the all-or-
nothing philosophy of XP.
It is more likely that the dependencies arose historically out of a desire to
distance XP from the heavyweight practices of Use Case overkill, CASE tools,
and architectural formalism. It started with a putting aside of architecture and
Use Cases. Use Cases were replaced by stories. Eventually, architecture was
replaced by TDD. Other practices such as YAGNI and On-Site Customer
would replace the picture later. [Bjørnvig, Coplien, and Harrison]
The argument was that these support each other. In fact these practices
propagate fundamental misunderstandings about what works in software
development and work together to create burnout, to reduce quality, and to
decay the architecture.

Cite: Gertrud Bjørnvig, Jim Coplien, and Neil Harrison. The Evil of TDD.
Better Software Magazine, November 2007; Better Software Magazine,
December 2007.

19

5 December 2007 Coplien — Five Agile Solutions 19G&C

The latest buzz: Domain
Specific languages

• To help remove design from the architects
and put it in the hands of the coders

• Longstanding application in Lucent and
Avaya; many lessons learned
 Developers end having to know too many

languages
 Expensive to make a complete complement of

tools: debuggers, configuration managers, etc.
 Making a language in an afternoon is easy;

making a good language takes years

Another rapidly rising technique is domain analysis and domain-specific
languages as popularized in several recent books. Domain analysis is a great
idea and can be the foundation of a good software architecture. However,
going all the way to a domain-specific language raises special challenges. It
sounds like a good idea, and it’s popular because it focuses on the programmer
in the same sense that so many Agile practices bring the focus back to the
programmer.
Our experience (at Lucent and Avaya) is that while domain-specific languages
sound like a good idea, that they work out only rarely. First, if you build a DSL
for each domain in your system, you end up with a tower of Babel. It is
difficult for programmers to master one language, let alone several. Together
with the understanding comes tool support: while it’s fun to build translators,
the hard everyday work of building debuggers, configuration management
platforms, and other tools is not fun and is often ignored. Last, the world is full
of bad application-specific languages— languages that have either been
patched badly with the hindsight of practical use, or that have remained
unchanged in the light of evolved understanding.

20

5 December 2007 Coplien — Five Agile Solutions 20G&C

Domain Specific Languages

 Take the value from the analysis and
run with it
 Use the power of your language to

express the program structure
 Sometimes, building a domain

engineering environment buys you only
cost and headaches

 Use DSLs only if the benefit/cost ratio
is high enough

When faced with an opportunity to develop or use DSLs, do a sober cost-
benefit analysis. Count the costs of support tools, learning curves, and
development; assess the benefits carefully.
Domain Analysis has tremendous value in its own right. Take the value from a
good domain analysis and use it to drive your architecture.
Cite: Coplien, Multiparadigm Design for C++. Addison-Wesley: 1998.

21

5 December 2007 Coplien — Five Agile Solutions 21G&C

Conclusion

• Many Agile practices are bad if done wrong
• Some Agile practices are universally bad
• The remedies hearken of longstanding,

known solutions
• The remedies complement each other

 Architecture as a recurring theme
 Focus on the Agile values
 Adopt suitable and proven practices—stick with

the proven practices

Just because something is part of the Agile canon doesn’t mean that it’s good.
There is in fact longstanding experience and theory that describes why many
Agile practices don’t and can’t work. That doesn’t mean Agile is bad; it just
means that some methodologies have been lured to sexy or simplistic solutions
instead of building on good experience, good research, and understanding. It’s
almost understandable that projects grasp at anything they can. But when these
ideas, which in fact can be harmful, reach the level of notoriety as the XP
practices have, the widespread damage sets back an entire industry.
Some Agile practices are almost always good—like good communication.
Some are good only part of the time—like pair programming. Some, like those
focused on here, have very little to substantiate their value. It is O.K. to
explore and experiment, but sound development is grounded in proven
practices. Many proven practices that pre-date XP and Agile as a buzzword are
perfectly consistent with the Agile values, if done in moderation. We have
mentioned some of them here: lightweight architecture, Use Cases, and system
testing.

22

