
Machine Architecture: Things Your

Programming Language Never Told You

Herb Sutter

Software Development Consultant

www.gotw.ca/training

© 2007 by Herb Sutter 1

Machine Architecture
(Things Your Programming Language Never Told You)

Herb Sutter

Machine Architecture
High-level languages insulate the programmer from the machine.
That’s a wonderful thing -- except when it obscures the answers to
the fundamental questions of “What does the program do?” and
“How much does it cost?”
The C++ programmer is less insulated than most, and still we find
that programmers are consistently surprised at what simple code
actually does and how expensive it can be -- not because of any
complexity of C++ the language, but because of being unaware of
the complexity of the machine on which the program actually runs.
This talk examines the “real meanings” and “true costs” of the code
we write and run especially on commodity and server systems, by
delving into the performance effects of bandwidth vs. latency
limitations, the ever-deepening memory hierarchy, the changing
costs arising from the hardware concurrency explosion,
memory model effects all the way from the compiler to the CPU to
the chipset to the cache, and more -- and what you can do about
them.

Machine Architecture: Things Your

Programming Language Never Told You

Herb Sutter

Software Development Consultant

www.gotw.ca/training

© 2007 by Herb Sutter 2

Apollo Guidance Computer (AGC)
CPU 1 MHz

RAM 4 Kwords in 2ft3

ROM 32 Kwords in 1ft3

Transfer Control

Clear and Subtract

exChange reg. A to Fixed
(read-only) memory

Transfer reg. A to
Storage

http://en.wikipedia.org/wiki/Image:Apollo-guidance-computer.jpg

Machine Architecture: Things Your

Programming Language Never Told You

Herb Sutter

Software Development Consultant

www.gotw.ca/training

© 2007 by Herb Sutter 3

Quiz: What Does It Cost?

 Nostalgic AGC lunar landing code:
CAF DPSTHRSH // A = *delta_per_sec_thrust_h (??)
TS DVTHRUSH // *delta_v_thrust_h = A
CAF FOUR // A = *four
TS DVCNTR // *delta_v_counter = A

CS ONE // A = --*one (?)
TS WCHPHASE // *which_phase = A

 Modern C++ code:
int i = *pi2 + *pi2;
double d = *pd1 * *pd2;
size_t hash = pobj->GetHashCode();

ofstream out(“output.txt”);
out << “i = ” << i << “, d = ” << d << “, hash = ” << hash << endl;

 What can you say about the cost of each line?

 What are the most to least expensive operations?

Machine Architecture and You

Q: What is the root of
(nearly) all hardware

complexity?

A: Latency.

Q: Does it affect my
code’s performance?

A: Yes. Locality matters.
Access pattern matters.

Q: Does it affect my code’s
correctness?

A: Yes. By changing its
meaning, even breaking
“correctly locked” code.

Machine Architecture: Things Your

Programming Language Never Told You

Herb Sutter

Software Development Consultant

www.gotw.ca/training

© 2007 by Herb Sutter 4

Bandwidth and Latency

 Bandwidth (aka throughput):
“How wide is your pipe?”
 Quantity that can enter/exit per unit

time.
 TAPS peak throughput: 2.1 Mbbl/d.

 Latency (aka lag):
“How long is your pipe?”
 Time for item inserted at one end to

arrive at other end.
 TAPS end-to-end latency: approx. 4.4 d.

 Quoting Burton Smith: “You can
solve a bandwidth problem with
money, but only God can solve a
latency problem.”

(Do you c why?)

Pipe section,
TAPS (Trans-Alaska
Pipeline System)

Latency Lags
Bandwidth
(last ~20 years)

CPU: 80286 – Pentium 4
L 21x BW 2,250x

Ethernet: 10Mb – 10Gb
L 16x BW 1,000x

Disk: 3600 – 15000rpm
L 8x BW 143x

DRAM: Plain – DDR
L 4x BW 120x

L = no contention

BW = best-case

Source: David Patterson, UC Berkeley,
HPEC keynote, Oct 2004
(http://www.ll.mit.edu/HPEC/agendas/p
roc04/invited/patterson_keynote.pdf)

Relative Latency Improvement

R
el

at
iv

e
B

an
d

w
id

th
 Im

p
ro

ve
m

en
t

Note: Processor biggest, memory smallest

Machine Architecture: Things Your

Programming Language Never Told You

Herb Sutter

Software Development Consultant

www.gotw.ca/training

© 2007 by Herb Sutter 5

Measuring Memory Latency

AGC 1980
VAX-11/750

Modern
Desktop

Improvement
since 1980

Clock speed (MHz) 1 6 3,000 +500x

Memory size (RAM, MB) 0.007 2 2,000 +1,000x

Memory bandwidth
(MB/s)

13 7,000 (read)
2,000 (write)

+540x
+150x

Memory latency (ns) ~12,000 225 ~70 +3x

Measuring Memory Latency

AGC 1980
VAX-11/750

Modern
Desktop

Improvement
since 1980

Clock speed (MHz) 1 6 3,000 +500x

Memory size (RAM, MB) 0.007 2 2,000 +1,000x

Memory bandwidth
(MB/s)

13 7,000 (read)
2,000 (write)

+540x
+150x

Memory latency (ns) ~12,000 225 ~70 +3x

Memory latency (cycles) 12 1.4 210 -150x

For comparison (cycles):
Floating-point multiply
Int < (e.g., bounds check)

13.5
1 ?

0.25 – 4
<1

Machine Architecture: Things Your

Programming Language Never Told You

Herb Sutter

Software Development Consultant

www.gotw.ca/training

© 2007 by Herb Sutter 6

TPC-C profile (courtesy Ravi Rajwar, Intel Research)

1400

1500

1600

1700

1800

1900

2000

2100

2200

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141 148 155 162 169 176 183

 Retired Uop ID

C
y
c
le

Cycle Allocated

Cycle Executed

UL2 Miss UOP and
dependents

Alloc
stalls

Miss Latency
Alloc

resumes

ROB size

Slope = f (core pipeline)

ti
m

e

Little’s Law

B L C

Machine Architecture: Things Your

Programming Language Never Told You

Herb Sutter

Software Development Consultant

www.gotw.ca/training

© 2007 by Herb Sutter 7

Bandwidth Latency = Concurrency

B

L

Q: So How Do We Cope With Latency?

A: Add Concurrency… Everywhere…

Strategy Technique Can affect
your code?

Parallelize
(leverage
compute
power)

Pipeline, execute out of order (“OoO”): Launch
expensive memory operations earlier, and do other work
while waiting.

Yes

Add hardware threads: Have other work available for
the same CPU core to perform while other work is
blocked on memory.

No *

Cache
(leverage
capacity)

Instruction cache No

Data cache: Multiple levels. Unit of sharing = cache line. Yes

Other buffering: Perhaps the most popular is store
buffering, because writes are usually more expensive.

Yes

Speculate
(leverage
bandwidth,
compute)

Predict branches: Guess whether an “if” will be true. No

Other optimistic execution: E.g., try both branches? No

Prefetch, scout: Warm up the cache. No

* But you have to provide said other work (e.g., software threads) or this is useless!

Machine Architecture: Things Your

Programming Language Never Told You

Herb Sutter

Software Development Consultant

www.gotw.ca/training

© 2007 by Herb Sutter 8

The Machine Everyone Programs For

CPU
Memory

Disk

The Actual Memory Hierarchy

(Simplified)

CPU (1..n)

Registers

Cache

L1$

I$

D$
Store
buffer

L2$

L3$

Memory

DRAM

On other
nodes

UMA

NUMA

Flash

Disk

Flash

HDD

Flash

ZIP

…Network

Machine Architecture: Things Your

Programming Language Never Told You

Herb Sutter

Software Development Consultant

www.gotw.ca/training

© 2007 by Herb Sutter 9

Sample Values On My Desktop

CPU (1..n)

Registers

Cache

L1$
I$

D$ Store
buffer

L2$

L3$

Memory

DRAM

On other
nodes

UMA

NUMA

Flash

Disk

Flash

HDD

Flash

ZIP

…Network

32 KB (64 B lines)
Latency: 3 cycles

32 KB (64 B lines)
Latency: 2 cycles

4 MB (64 B lines)
Latency: 14 cycles

2 GB (4 KB pages)
Latency: 200 cycles

200 GB (blocks, clusters)
Latency: 15 Mcycles

4 GB (blocks, clusters)
Latency: 3 Mcycles

Quiz: What Does It Cost?

 Code:
int i = *pi2 + *pi2;
double d = *pd1 * *pd2;
size_t hash = pobj->GetHashCode();
ofstream out(“output.txt”);
out << “i = ” << i << “, d = ” << d << “, hash = ” << hash << endl;

 Sample costs on modern microprocessors:
 Floating-point multiply: 4 cycles
 DRAM access: 200 cycles
 File open and write: Beyond in-memory buffering, who knows?

 On a local HDD? File system disk accesses (seeks, rotations, contention).
 Using a file system plugin/extension? Examples: On-demand virus

scanning (compute); ZIP used as a folder (add navigation
seek/compress/compute).

 On a network share? Protocol layers, hops, translations, plus all latencies.
 On a flash drive? Better/worse dep. on access patterns (e.g., no rotation).

Machine Architecture: Things Your

Programming Language Never Told You

Herb Sutter

Software Development Consultant

www.gotw.ca/training

© 2007 by Herb Sutter 10

Sample
Modern CPU

Original Itanium 2 had
211Mt, 85% for cache:
16 KB L1I$
16 KB L1D$
256 KB L2$
3 MB L3$

1% of die to compute,
99% to move/store data?

Itanium 2 9050:
Dual-core
24 MB L3$

Source: David Patterson, UC Berkeley,
HPEC keynote, Oct 2004
(http://www.ll.mit.edu/HPEC/agendas/
proc04/invited/patterson_keynote.pdf)

Memory Latency

Is the Root of Most Evil

 The vast majority of your hardware’s
complexity is a direct result of ever more
heroic attempts to hide the Memory Wall.

 In CPUs, chipsets, memory subsystems, and disk subsystems.

 In making the memory hierarchy ever deeper (e.g., flash
thumbdrives used by the OS for more caching; flash memory
embedded directly on hard drives).

 Hardware is sometimes even willing to change the meaning of
your code, and possibly break it, just to hide memory latency
and make the code run faster.

 Latency as the root of most evil is a unifying theme of this
talk, and many other talks.

Machine Architecture: Things Your

Programming Language Never Told You

Herb Sutter

Software Development Consultant

www.gotw.ca/training

© 2007 by Herb Sutter 11

Machine Architecture and You

Q: What is the root of
(nearly) all hardware

complexity?

A: Latency.

Q: Does it affect my
code’s performance?

A: Yes. Locality matters.
Access pattern matters.

Q: Does it affect my code’s
correctness?

A: Yes. By changing its
meaning, even breaking
“correctly locked” code.

Instruction Reordering

and the Memory Model

 Definitions:

 Instruction reordering: When a program executes instructions,
especially memory reads and writes, in an order that is
different than the order specified in the program’s source
code.

 Memory model: Describes how memory reads and writes may
appear to be executed relative to their program order.

 “Compilers, chips, and caches, oh my!”

 Affects the valid optimizations that can be performed by
compilers, physical processors, and caches.

Machine Architecture: Things Your

Programming Language Never Told You

Herb Sutter

Software Development Consultant

www.gotw.ca/training

© 2007 by Herb Sutter 12

Sequential Consistency (SC)

 Sequential consistency was originally defined in 1979 by
Leslie Lamport as follows:

“… the result of any execution is the same as if the reads and
writes occurred in some order, and the operations of each
individual processor appear in this sequence in the order
specified by its program”

 But chip/compiler designers can be annoyingly helpful:

 It can be more expensive to do exactly what you wrote.

 Often they’d rather do something else, that could run faster.

 Most programmers’ reaction: “What do you mean, you’ll
consider executing my code the way I wrote it…?!”

Dekker’s and Peterson’s Algorithms

 Consider (flags are shared and atomic, initially zero):
 Thread 1:

flag1 = 1; // a: declare intent to enter
if(flag2 != 0) { ... } // b: detect and resolve contention
// enter critical section

 Thread 2:
flag2 = 1; // c: declare intent to enter
if(flag1 != 0) { ... } // d: detect and resolve contention
// enter critical section

 Could both threads enter the critical region?
 Maybe: If a can pass b, and c can pass d, we could get bdac.
 Solution 1 (good): Use a suitable atomic type (e.g., Java/.NET/VC++

“volatile”, C++0x std::atomic<>) for the flag variables.
 Solution 2 (good?): Use system locks instead of rolling your own.
 Solution 3 (problematic): Write a memory barrier after a and c.

Machine Architecture: Things Your

Programming Language Never Told You

Herb Sutter

Software Development Consultant

www.gotw.ca/training

© 2007 by Herb Sutter 13

Processor 2Processor 1

Write 1
to flag1
(sent to
store
buffer)

Read 0 from flag2
(read allowed to pass
buffered store to
different location)

Flush
buffered
store to
flag1

Store Buffer

flag1 = 1; (1)

if(flag2 != 0) {…}; (3)

Write 1
to flag2
(sent to
store
buffer)

Read 0 from flag1
(read allowed to pass
buffered store to
different location)

Flush
buffered
store to
flag2

Store Buffer

flag2 = 1; (2)

if(flag1 != 0) {…} (4)

Global Memory

Transformations:

Reordering + invention + removal

 The level at which the trans-
formation happens is (usually)
invisible to the programmer.

 The only thing that matters to
the programmer is that the
system behaves as though:
 The order in which memory

operations are actually executed
is equivalent to some sequential
execution according to program
source order.

 Each write is visible to all
processors at the same time.

 Tools and hardware (should) try
to maintain that illusion.
Sometimes they don’t. We’ll
see why, and what you can do.

Machine Architecture: Things Your

Programming Language Never Told You

Herb Sutter

Software Development Consultant

www.gotw.ca/training

© 2007 by Herb Sutter 14

Controlling Reordering #1: Use Locks

 Use locks to protect code that reads/writes shared variables.

 Of course, the whole point of Dekker’s/Peterson’s was to implement a
kind of lock.

 Someone has to write the code. But it doesn’t have to be you.

 Advantage: Locks acquire/release induce ordering and nearly
all reordering/invention/removal weirdness just goes away.

 Disadvantages:

 (Potential) Performance: Taking locks might be expensive, esp. under
high contention. But don’t assume! Many locks are very efficient.

 Correctness: Writing correct lock-based code is harder than it looks.

 Deadlock can happen any time two threads try to take two locks in
opposite orders, and it’s hard to prove that can’t happen.

 Livelock can happen when locks try to “back off” (Chip ‘n’ Dale effect).

Controlling Reordering #2: std::atomic<>

 Special atomic types (aka Java/.NET/VC++ “volatile”, C++0x
std::atomic<>) are automatically safe from reordering. Declare
flag1 and flag2 appropriately (e.g., atomic<int> flag1, flag2;)
and the code works:

flag1 = 1;

if(flag2 != 0) { ... }

 Advantage: Just tag the variable, not every place it’s used.

 Disadvantages:
 Nonportable today: C++ compilers will spell it consistently in C++0x.

 Difficult: Writing correct lock-free code is much harder than it looks.
 You will want to try. Please resist. Remember that the reordering

weirdnesses in this section affect only lock-free code.

 A new lock-free algorithm or data structure is a publishable result.

 Some common data structures have no known lock-free implementation.

Machine Architecture: Things Your

Programming Language Never Told You

Herb Sutter

Software Development Consultant

www.gotw.ca/training

© 2007 by Herb Sutter 15

Controlling Reordering #3: Fences/Barriers

 Fences (aka memory barriers, membars) are explicit “sandbars” that
prevent reordering across the point where they appear:

flag1 = 1;
mb(); // Linux full barrier (on x86, generates mfence)
if(flag2 != 0) { ... }

 Disadvantages:
 Nonportable: Different flavors on different processors.
 Tedious: Have to be written at every point of use (not just on

declaration).
 Error-prone: Extremely hard to reason about and write correctly.

Even lock-free guru papers rarely try to say where the fences go.

 Always avoid “barriers” that purport to apply only to compiler
reordering or only to processor reordering. Reordering can usually
happen at any level with the same effect.
 Example: Win32 _ReadWriteBarrier affects only compiler reordering.
 (Note that barriers that prevent processor reordering usually also

prevent compiler reordering, but check docs to be sure.)

Object Layout Considerations

 Given a global s of type struct { int a:9; int b:7; }:
 Thread 1:

{
lock<mutex> hold(saMutex);
s.a = 1;

}

 Thread 2:

{
lock<mutex> hold(sbMutex);
s.b = 1;

}

 Is there a race? Yes in C++0x, almost certainly yes today:
 C++0x will say that this is a race. Adjacent bitfields are one “object.”

 It may be impossible to generate code that will update the bits of a
without updating the bits of b, and vice versa.

Machine Architecture: Things Your

Programming Language Never Told You

Herb Sutter

Software Development Consultant

www.gotw.ca/training

© 2007 by Herb Sutter 16

Object Layout Considerations (2)
 What about two global variables char c; and char d; ?

 Thread 1:
{
Lock hold(cMutex);
c = 1;

}
 Thread 2:

{
Lock hold(dMutex);
d = 1;

}

 Is there a race? No ideally and in C++0x, but maybe today:
 Say we lay out c then d contiguously, and transform “d = 1;” to:

char tmp[4];
memcpy(&tmp[0], &c, 4);
// … in tmp, write to the bits corresponding to d …
memcpy(&c, &tmp[0], 4);

Things Compilers/CPUs/Caches/… Will Do

 There are many transformations. Here are two common ones.
 Speculation:

 Say the system (compiler, CPU, cache, …) speculates that a condition
may be true (e.g., branch prediction), or has reason to believe that a
condition is often true (e.g., it was true the last 100 times we executed
this code).

 To save time, we can optimistically start further execution based on that
guess. If it’s right, we saved time. If it’s wrong, we have to undo any
speculative work.

 Register allocation:
 Say the program updates a variable x in a tight loop. To save time: Load x

into a register, update the register, and then write the final value to x.

Key issue: The system must not invent a write to a variable that
wouldn’t be written to (in an SC execution).

If the programmer can’t see all the variables that get written to,
they can’t possibly know what locks to take.

Machine Architecture: Things Your

Programming Language Never Told You

Herb Sutter

Software Development Consultant

www.gotw.ca/training

© 2007 by Herb Sutter 17

Speculation

 Consider (where x is a shared variable):
if(cond)
x = 42;

 Say the system (compiler, CPU, cache, …) speculates (predicts,
guesses, measures) that cond (may be, will be, often is) true.
Can this be transformed to:

r1 = x; // read what’s there
x = 42; // perform an optimistic write
if(!cond) // check if we guessed wrong
x = r1; // if we did, back it out... no harm no foul, right?

 In theory, No… but on some implementations, Maybe.
 Same key issue: Inventing a write to a location that would never be

written to in an SC execution.

 If this happens, it can break patterns that conditionally take a lock.

Speculation (2)

 Let’s add a little more context to show a real-world issue:
void f(/*...params...*/, bool doOptionalWork) {
if(doOptionalWork) xMutex.lock();
...
if(doOptionalWork) x = 42; // possibly far down the call tree
...
if(doOptionalWork) xMutex.unlock();

}

 Now we see the problem with this transformation:
r1 = x;
x = 42;
if(!doOptionalWork)
x = r1; // oops: not holding the lock

 If so, it’s not safe to have a conditional lock.
 (Workaround coming up, hold on for a few slides…)

Machine Architecture: Things Your

Programming Language Never Told You

Herb Sutter

Software Development Consultant

www.gotw.ca/training

© 2007 by Herb Sutter 18

Register Allocation

 Here’s a much more common problem case:

void f(/*...params...*/, bool doOptionalWork) {
if(doOptionalWork) xMutex.lock();

for(...)
if(doOptionalWork) ++x; // write is conditional

if(doOptionalWork) xMutex.unlock();
}

 A very likely (if deeply flawed) transformation:

r1 = x;
for(...)

if(doOptionalWork) ++r1;
x = r1; // oops: write is not conditional

 If so, again, it’s not safe to have a conditional lock.

Register Allocation (2)

 Here’s another variant.
 A write in a loop body is conditional on the loop’s being entered!

void f(vector<Blah>& v) {
if(v.length() > 0) xMutex.lock();

for(int i = 0; i < v.length(); ++i)
++x; // write is still conditional

if(v.length() > 0) xMutex.unlock();
}

 A very likely (if deeply flawed) transformation:
r1 = x;
for(int i = 0; i < v.length(); ++i)

++r1; // write is still conditional
x = r1; // oops: write is not conditional

 If so, again, it’s not safe to have a conditional lock.

Machine Architecture: Things Your

Programming Language Never Told You

Herb Sutter

Software Development Consultant

www.gotw.ca/training

© 2007 by Herb Sutter 19

Register Allocation (3)
 “What? Register allocation is now a Bad Thing™?!”

 No. Only naïve unchecked register allocation is a broken optimization.

 This transformation is perfectly safe:
r1 = x;
for(...)
if(doOptionalWork) ++r1;

if(doOptionalWork) x = r1; // write is conditional

 So is this one (“dirty bit,” much as some caches do):
r1 = x; bDirty = false;
for(...)
if(doOptionalWork) ++r1, bDirty = true;

if(bDirty) x = r1; // write is conditional

 And so is this one:
r1 = 0;
for(...)
if(doOptionalWork) ++r1;

if(r1 != 0) x += r1; // write is conditional
// (note: test is !=, not <)

What Have We Learned?

Dealing With Conditional Locks

 Problem:
 Your code conditionally takes a lock, but your system changes a

conditional write to be unconditional.

 If so, it’s not safe to have a conditional lock. The “SC for correctly
locked code” illusion breaks because of a tool/hardware bug.

 Workaround:
 Pessimistically take a lock for any variables you mention anywhere in

a region of code.
 Even if updates are conditional, and by SC reasoning you could believe

you won’t reach that code on some paths and so won’t need the lock.

 In code like we’ve seen, replace one function having a
doOptionalWork flag with two functions (possibly overloaded):
 One function always takes the lock and does the x-related work.

 One function never takes the lock or touches x.

Machine Architecture: Things Your

Programming Language Never Told You

Herb Sutter

Software Development Consultant

www.gotw.ca/training

© 2007 by Herb Sutter 20

What Have We Learned?

Dealing With Conditional Locks (2)

 In general, code may conditionally update a shared variable:
 In a block that may not be executed:

if(cond) { if(cond) goto Label:
… …
++x; ++x;
… …

} Label:

 In a loop that may not be executed (incl. loops inside algorithms):
for(…) { while(…) { for_each(…, UpdateX());
… … transform(…, UpdateX());
++x; ++x; remove_if(…, BadPredUpdatesX());
… …

} }

 Be careful of system bugs if you want to use the “may not be
executed” information to save taking a lock that you “know”
you don’t need (where “know” = “because of SC reasoning”).

Machine Architecture and You

Q: What is the root of
(nearly) all hardware

complexity?

A: Latency.

Q: Does it affect my
code’s performance?

A: Yes. Locality matters.
Access pattern matters.

Q: Does it affect my code’s
correctness?

A: Yes. By changing its
meaning, even breaking
“correctly locked” code.

Machine Architecture: Things Your

Programming Language Never Told You

Herb Sutter

Software Development Consultant

www.gotw.ca/training

© 2007 by Herb Sutter 21

Adding 1M ints

 Q: Is it faster to sum an array of ints, an equivalent list of
ints, or an equivalent set of ints? Which, how much so,
and why?

Working Set Effects: Storing 1M ints
 Imagine 4B int/*, 64B cache lines (HW), 4KB memory pages (OS):

``

 Chunking/packing at multiple levels sometimes overheads multiply.

Working set arrangement Cache Memory

lines total # pages total

Perfectly contiguously
(e.g., vector<int>)

65,536 4 MB 1,024 4 MB

Full cache lines, half-full pages
(e.g., vector< array<int,512>*>)

65,536 4 MB min 1,024
max 2,048

min 4 MB
max 8 MB

5.33 ints per cache line
(e.g., list<int>, 12B/node)

196,608 12 MB min 3,072
max 327,680

min 12 MB
max 1,311 MB

3.2 ints per cache line
(e.g., set<int>, 20B/node)

327,680 20 MB min 5,120
max 327,680

min 20 MB
max 1,311 MB

< Cache utilization
> Cache contention

< Memory utilization
> Disk activity

Machine Architecture: Things Your

Programming Language Never Told You

Herb Sutter

Software Development Consultant

www.gotw.ca/training

© 2007 by Herb Sutter 22

Adding 1M ints

 Q: Is it faster to sum an array of ints, an equivalent list of ints,
or an equivalent set of ints? Which, how much so, and why?

 A1: It’s the cache, silly! (usual answer, but this time with data)
 Fewer linked list items fit in any given level of cache. All those object

headers and links waste space.

 But it’s also the traversal: Visitation order matters!

 A2: Out-of-order processors really like arrays.
 A modern out-of-order processor can potentially zoom ahead and

make progress on several items in the array at the same time.

 In contrast, with the linked list or the set, until the current node is in
cache, the processor can’t get started fetching the next link to the
node after that.

 It’s not uncommon for a loop doing multiplies/adds on a list of
ints to be spending most its time idling, waiting for memory…

My Desktop Machine: 32K L1D$, 4M L2$

 Observations

 Access patterns
matter:

 Linear = not bad.

 Random = awful.

 Vectors:

 Smaller = further
left, faster.

 Often on lower
curves = faster.

 Lists and sets:

 Bigger = further
right, slower.

 On higher curves
= slower.

You can see it trying to
predict, scrambling madly to

stay ahead and keep the
pipeline full…!

array, vector

list, set

Machine Architecture: Things Your

Programming Language Never Told You

Herb Sutter

Software Development Consultant

www.gotw.ca/training

© 2007 by Herb Sutter 23

My Desktop Machine: 32K L1D$, 4M L2$

 Observations

 Access patterns
matter:

 Linear = not bad.

 Random = awful.

 Vectors:

 Smaller = further
left, faster.

 Often on lower
curves = faster.

 Lists and sets:

 Bigger = further
right, slower.

 On higher curves
= slower.

V L S

Cache-Conscious Design (with thanks to Jan Gray)

 Locality is a first-order issue.
 Experiment and measure your scenarios. It’s hard to predict

second-order effects. Rules of thumb aren’t worth the PowerPoint
slides they’re printed on.

 Prefer compact representations. Arrays and vectors implicitly use
adjacency to represent which data is “next.” Lists and sets/maps use
pointers. Implicitness saves space, and may allow the processor to
commence more work before chasing down the next pointer.

 Consider usage patterns. Some usage patterns favor hybrid
structures—lists of small arrays, arrays of arrays, or B-trees.

 Consider treating memory like disk. Disk-access-sensitive
scheduling algorithms were designed back when disk accesses cost
only 50,000 CPU instructions. It may be time to recycle them now
that DRAM accesses can take thousands of CPU operations.

 Consider partitioning your data. Separate “hot” parts that are
frequently traversed and must fit in cache, and “cold” parts that are
infrequently used and can be ‘cached out.’

Machine Architecture: Things Your

Programming Language Never Told You

Herb Sutter

Software Development Consultant

www.gotw.ca/training

© 2007 by Herb Sutter 24

Machine Architecture and You

Q: What is the root of
(nearly) all hardware

complexity?

A: Latency.

Q: Does it affect my
code’s performance?

A: Yes. Locality matters.
Access patterns matter.

Q: Does it affect my code’s
correctness?

A: Yes. By changing its
meaning, even breaking
“correctly locked” code.

For More Information
 My website: www.gotw.ca

My blog: herbsutter.spaces.live.com

 Rico Mariani’s blog: blogs.msdn.com/ricom

 Joe Duffy’s blog: www.bluebytesoftware.com/blog/

 RightMark Memory Analyzer: www.rightmark.org

 D. Patterson. “Latency Lags Bandwidth”
(Communications of the ACM, 47(10):71-75, Oct 2004).

 H. Boehm and L. Crowl. “C++ Atomic Types and Operations” (ISO C++
committee paper N2145, Jan 2007).
www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2145.html

 H. Sutter. “Prism: A Principle-Based Sequential Memory Model for
Microsoft Native Code Platforms” (ISO C++ committee paper N2075, Sep
2006).
www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2075.pdf

 H. Boehm. “A Less Formal Explanation of the Proposed C++ Concurrency
Memory Model” (ISO C++ committee paper N2138, Nov 2006).
www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2138.html

