
.NET Exception Handling
Traps and Pitfalls

ACCU 2007

Seb Rose, Claysnow Limited



2

Let’s be CLR

• Managed code is executed by the Common 
Language Runtime (CLR)

• Managed applications are compiled to 
Common Intermediate Language (CIL)



3

Exceptions

• Exception handling in .NET is superficially 
very similar to Java/C++

• C# exception handling syntax looks very 
similar to Java/C++

• In many cases you can handle .NET 
exceptions just like Java/C++



4

RAII

• Resource Acquisition Is Initialisation 
(RAII) is an important idiom for managing 
resources.

• If constructor fails, no resources are 
retained

• Destructor releases all resources



5

RAII 2

• In C++, destructor will be called when stack 
allocated object goes out of scope

• This includes stack unwinding caused by 
unhandled exception

• .NET creates all objects on managed heap

• Calling of destructor is not deterministic (or 
even guaranteed)



6

RAII 3

• .NET provides IDisposable interface:
interface IDisposable {

void Dispose();
}

• All resources should be released by calling 
Dispose

• Object should not be used after calling 
Dispose



7

RAII 4
• If you implement destructor & IDisposable:

class MyClass : IDisposable {
void Dispose() {

Dispose(true);
GC.SuppressFinalize();}

~MyClass {Dispose(false);}
void Dispose(bool disposing)
{ /* Release resources */ }

}



8

RAII 5

MyClass myObject = new MyClass();
try
{ … }
finally
{
myObject.Dispose();

}



9

RAII 6

• C# provides using construct:
using (MyClass myObject = new MyClass())
{ … }

• Which translates exactlyto the code on previous 
slide

• To perform your own exception handling you will 
need to add your own try/catch/finally block(s).



10

RAII 7

• More than one disposableobject:
using (MyClass obj1 = new MyClass()) {
using (MyClass obj2 = new MyClass()) {
…

}
}

• Each usingstatement translates to a try/finally
block, ensuring correct operation.



11

RAII 8

• The usingstatement can also be used with 
objects that already exist:
MyClass obj = new MyClass();
// You are responible for calling Dispose
using (obj) {
// Dispose will be called when exiting block

}
// Dispose will ALWAYS have been called



12

Boxing & Wrapping

• CLR only allows references to be thrown
• If managed C++ code throws an int then 

this will be boxed
• An object of type System::Int32 will be 

created on heap & value will be copied
• Logic of C++ code will not be affected, but 

consider interoperation with other 
components



13

CLS

• Common Language Specification (CLS) 
defines subset of CIL that languages should 
adhere to, to allow interaction between 
managed components written in different 
languages

• CLS says that all exceptions should derive 
from System.Exception



14

C# - to catch an int

• Prior to .NET 2.0, the only way C# code 
could catch an int exception would be in a 
catch-all block: catch { … }

• In a catch-all block there is no access to the 
actual exception that was thrown.

• .NET 2.0 introduced the 
RuntimeWrappedException class



15

RuntimeWrappedException

• Derives from System.Exception, so includes 
a stack trace

• Behaviour controlled by assembly attribute
WrapNonExceptionThrows

• Sample code demonstrates some of this.



16

Win32

• A lot of functionality is provided in .NET 
framework, but there’s plenty that you need 
to go direct to Win32 for.

• .NET allows direct access via platform 
invoke (P/Invoke) – just import the function 
and use it

• However, many Win32 calls return an error 
code rather than throw an exception.



17

Win32Exception

[DllImport(“coredll.dll”, SetLastError=true)]

public static extern int RegCreateKeyEx(…);

if (!RegCreateKeyEx(…)) {
throw new Win32Exception();

}

• Win32Exceptionwill initialise by calling 
GetLastErrorinternally.



18

External Exceptions

• .NET will try to map exceptions from 
unmanaged code to .NET exceptions

• Many mapping for OS & hardware level 
errors exist – see references.

• If no mapping exists exception will be 
wrapped in SEHException or 
COMException.



19

Called from COM

• If your component might be called via 
COM, then you can set an HRESULT code 
on any managed exception that you throw.

• The System.Exceptionclass has an HResult
member that can be set in the constructor.



20

Called Remotely

• .NET makes it easy to access components 
remotely

• For a custom exception to be transferred 
over remoting boundaries correctly it must 
exist in a shared assembly that is copied to, 
and referenced from, your client and server 
applications



21

Called Remotely, continued

Your custom exception must:
• Override GetObjectData
• Provide custom constructor for de-

serialization
See template in reference document.
Incorrect deployment may lead to:

The constructor to deserialize an object of type 
MyException was not found



22

Re-throwing

Having caught an exception you might want

to re-throw it:

1. catch (Exception e) { throw; }

2. catch (Exception e) { throw e; }

The difference is that 1) will preserve the 

stacktrace, while 2) will reset it.



23

Swallowing

• You can swallow an exception:
catch (Exception e) { }

• The ThreadAbortExceptionis an undeniable 
exception

• If you swallow an undeniable exception it 
will be reintroduced by the runtime at the 
end of the block that swallowed it.



24

For completeness…

• FailFast – no stack unwinding, no messing about 
– call System.Environment.FailFast()

• Critical Finalizers – if you need absolute 
guarantees that your finalizer will be called, then:

1. Derive from: CriticalFinalizerObject

2. Annotate with: [ReliabilityContract( 
Consistency.WillNotCorruptState, Cer.Success)]



25

Exceptions & Threads

• Prior to .NET 2.0 exceptions from worker 
threads were lost

• From 2.0 unhandled exceptions in any 
thread invokes one of your applications 
unhandled exception handlers

• One for the CLR, one for Windows Forms

• Other hosts (ASP.NET) have other policies



26

2 Pass Exception Handling

• Unlike C++/Java, the CLR implements a 2 
pass exception handling mechanism.

• Pass 1 – the stack is walked looking for 
matching exception handler

• Pass 2 – Stack is unwound and exception 
handler is invoked

• If no matching handler found then follow
unhandled exception handling policy



27

Why 2 Passes?

• It makes for easier debugging

• Same model used for Windows Structured 
Exception Handling (SEH). In this model 
the SEH exception filters can try to ‘fix’ the 
cause of the exception and ask the OS to 
RESUME execution at the point the 
exception was thrown. This is not currently 
implemented in the CLR



28

Exception Filters

• In C# the only permitted exception filter is 
by the type of the exception thrown

• CIL allows for exception filters that execute 
code to determine if the exception should be 
handled.

• These sorts of filters are also supported in 
VB.NET



29

Exception Filters, continued

• Since execution filters are examined during 
the 1st Pass, the stack has not been unwound

• Any privileges that may have been granted 
to trusted code further down the stack are 
still granted during execution of the filter

• Potential for untrusted code to perform 
actions that it should not be allowed to.



30

Belts & Braces Fix

• MS reworked many of its libraries to wrap 
calls in a ‘redundant’try/catch block:
try {
try { /* Call trusted code */  }
finally { /* Rollback trust */ }

} catch {
throw;

}



31

.NET Partial Fix

• CLR in .NET 2.0 looks for impersonations 
while it walks the stack in Pass 1

• Any impersonations found are rolled back 
during Pass 1

• The impersonation must be directly ON the 
call stack – if it was performed by method 
call, then it won’t be found.



32

Conclusion

• .NET Exception handling is generally 
intuitive for C++/Java developers

• C++ developers cannot rely on destructors

• There is lots of functionality for 
interoperation with legacy Windows

• The fundamental implementation of 
exception handling is significantly different



33

Questions?


