
Semantic Programming

Ric Parkin

2

A gentle start

• A motivating example
• Lots of ways to make things better

• Some will be familiar
• Some may be new
• Some may be ideas you’ve never tried

• A step back to look for unifying concepts
• Conclusions

3

A motivating example

void* memset(void* ptr, int fill,

size_t count);
memset(buffer, buffersize, 0);

4

You think it can't happen?

And my favourite
#define ZeroMemory(obj,size) memset(obj,size,0)

5

So what is the problem?

1)The programmer has written something they do
not really mean

2) It looks okay so rereading might not spot it

3)The syntax is correct so compiler accepted

4)At runtime it might trigger, and if so we might
spot the resulting bug, otherwise we'll release
with it, and the user might find it

6

Inspiration

Scott Meyers Effective C++ Item 18

Make interfaces easy to use correctly and hard to
use incorrectly.

Pete Goodliffe: CodeCraft Chapter 6

If you can pull forward any tests to compile time,
then do so. The sooner you detect and rectify an
error, the less hassle it can cause.

7

What would help?

When you write
It should be easy to express what you want to
happen

When you read
It should be clear what the code actually does

When you compile
The computer should catch mistakes

8

Aim to make it so that...

Correct code is

easy

clear

compiles

Incorrect code is

hard

ugly

an error

9

Aside: language applicability

• Key feature is the compiler reasons about the
code before you run it and can reject it

• Key technique is to make new types
Encapsulation

• Mainly strongly typed languages
eg C, C++, C#, Java

• Things that are nice to have
Overloading on type

Operator overloading

Templates

10

Helping you get it right

• Education
• Add comments
• Documentation tools

Doxygen, Docbook, JavaDoc etc

Would be nice if your editor will show it, or hook into help

/// Fill an area of memory with a repeated byte

/// \param p Start of memory area to fill

/// \param c Fill byte (as int, converts to uchar)

/// \param i Size of memory area to fill

/// \return Returns passed in buffer

void* memset(void* p, int c, size_t i);

11

Name the variables/parameters

• What does it represent?
Hungarian?

• 'Good' v 'bad'

• Typeless or dynamic languages

• Return value has no name
Function name should describe the return value

Procedure name should describe what it does

void* memset(

void* memoryAddress,

int fillByte,

size_t memorySize);

12

Name the types

typedef void* Address;

typedef int Byte;

typedef size_t Count;

Address memset(

Address memoryStart,

Byte fill,

Count memoryLength);

• Use typedef
Is an alias, not a new type
Is just another form of documentation
Takes part of the description from the variable name

13

Introduce a new type – by hand

• Really make a new type
Carefully control conversions

Is a place for helpers

struct Byte {
explicit Byte(unsigned char value);
operator unsigned char() const;
private: unsigned char value;

};

Address memset(
Address memoryStart,
Byte fill,
Count count);

14

Introduce a new type - automatic

struct ByteTag {};
typedef Integer<unsigned char, ByteTag> Byte;

• Strong/opaque typedef? No
Was a proposal (wg21 N1706 N1891 N2141) but is stalled

• But we can write our own generators

Constructor inheritance proposal (wg21 n2203)
Interaction with literals - constructors and operators
boost.operators makes it much easier to write lots of operators

struct MyStringTraits : char_traits<char> {};
typedef basic_string<char,MyStringTraits> MyString;

15

Clouds, camels, weasels and whales

We want the new type to act like the old type,
except not quite

Ham. Do you see yonder cloud that ’s almost in shape of a camel?
Pol. By the mass, and ’t is like a camel, indeed.
Ham. Methinks it is like a weasel.
Pol. It is backed like a weasel.
Ham. Or like a whale?
Pol. Very like a whale.

16

Find things that 'go together'

Buffer address and size form a natural “unit”
• Combine into a composite type

Compare 'Up Front' verses 'Just In Time' discovery

Good for security issues

struct Memory
{

Memory(void* address, size_t size);
void* address;
size_t size;

};

Memory memset(Memory memory, Byte fill);

17

Bools and flags

True/false is the answer but to what question?

DrawText(Text(“Hello World”), Point(0,0),
true, true, false, 3);

void DrawText(

Text text,

Point position,

bool alignLeft,

bool alignTop,

bool doKerning,

int fontTypes);

18

Enums for bools and flags

enum HAlign { HLeft, HRight };
enum VAlign { VTop, VBottom };
enum KerningSetting { NoKerning, Kerning };
enum FontTypes { FontTypeVector = 1, FontTypeTrueTyp e
= 2, FontTypeBitmap = 4 };

void DrawText(..., HAlign hAlign, VAlign vAlign,
KerningSetting kerning, FontTypes fonts ...);

DrawText(..., HRight, VTop, NoKerning,
FontTypeVector | FontTypeTrueType, ...);

• Introduce an enum to make the caller clearer

19

Enums, flags, and bitfields

enum Bit { Bit1, Bit2};
struct BitField {

Bit value;
BitField(Bit bit);
bool isSet(Bit bit) const;
BitField& operator |= (BitField bitfield);
...

};

• One-Of
Can only take one of the enumerators

• Set-Of, ie bitfield
Make it easy to combine several of the enumerators

eg Meyers ACCU 2006: When C++ meets the hardware

20

Strong enums

namespace HAlign {
enum Enum {

Left,
Middle,
Right

};
}
void DrawText(..., HAlign::Enum halign, ...);

DrawText(..., HAlign::Left, ...);

C/C++ enumerator names leak into outer scope
• Introduce a new scope

Future: strong enum
WG21 n2213

21

Add useful interactions

Undesired conversions are an important example of
type interactions. Built in operators are another
But int + int is syntactically okay, even if one represents a count and

the other is a velocity!

• Add selected interactions between new types

Distance operator+(Distance, Distance);
Location operator+(Location, Distance);
Location operator+(Distance, Location);
Distance operator-(Location, Location);

Distance operator+(Distance, long); //?
Distance operator+(long, Distance); //?

22

Type systems - 1

• Geometry

struct X {};
struct DeltaX {};

X operator+(X, DeltaX);
X operator+(DeltaX, X);
DeltaX operator-(X, X);

• Unit conversions

// Use in Mars Climate Orbiter and save $125m

DistanceUS::operator DistanceMetric() const

{ return m_miles * 1.609344; }

23

Type systems - 2

• Physical quantities system
http://sourceforge.net/projects/quan

Encodes physical units into type eg:
template <int length, int time, int mass>
class Quantity {…}
typedef Quantity<1,0,0> Distance;
typedef Quantity<0,1,0> Time;
typedef Quantity<0,0,1> Mass;
typedef Quantity<1,-1,0> Speed;
typedef Quantity<2,-2,1> Energy;

Distance operator*(Velocity, Time);

Compiler does dimensional analysis!

24

Type system generation

• When need to instantiate multiple related types
Having each type as own template gets tricky so instantiate the

whole system as one

template <typename Tag>

struct Axis {

struct Coord {};

struct Distance {};

friend Coord operator+(Coord, Distance);

friend Coord operator+(Distance, Coord);

};

struct XTag {}; struct YTag {};

typedef Axis<XTag> XAxis; typedef XAxis::Coord X;

typedef Axis<YTag> YAxis; typedef YAxis::Coord Y;

25

Not copyable or assignable

Many classes should never be copied or assigned
• Prevent it from compiling/linking
// By Hand

class File {

private:

File(const File&);

File& operator=(const File&);

};

// Helper

class File : noncopyable {};

Encapsulates a rule about usage

26

ReadOnly and ReadWrite

A very common usage rule – I will give you access
to an object but you can only look

Makes calling code easier to reason about if can
assume the callee does not change things

Three main techniques:
• Documentation
• Separate interfaces
struct IReadOnly { int getX(); };

struct IReadWrite : IReadOnly { void setX(int x); };

• Const!
struct IReadWrite { int getX() const; void setX(int x); };

27

Locking

Multithreaded code must protect access

Locking/unlocking is an obvious use of RAII class
Lock lock(m_crit);

Locking objects is an obvious extension
Obj* obj = getSharedObject();

Lock lock(*obj); // Obj is a lockable object

obj->serialisedAPI();

But you can forget to lock…

Is there some way to enforce?

28

Unavoidable locking

template <typename Value> struct ProtectedValue {

Crit m_crit; Value m_value;

struct ConstAccess : private Lock {

ConstAccess(const ProtectedValue& pv)

: Lock(pv.m_crit), m_pv(pv) {}

const Value& get() const { return m_pv; }

};

// and non-const Access

};

typedef ProtectedValue<int> ProtectedInt;

ProtectedInt protectedInt;

cout<< ProtectedInt::ConstAccess(protectedInt).get();

29

Object lifetime and ownership

What lifetime guarantees are there?
How/when should client dispose of the object?

Mail* MailServer::create();
bool MailServer::send(Mail*);

• Encapsulate in a new type (or generate one)
auto_ptr<Mail> MailServer::create();

auto_ptr<Mail> mail = mailServer.create();

...

mailServer.send(mail.get());

30

auto_ptr – a defence

auto_ptr gets a bad press - 3 versions, bugs in
some implementations

But it does some things very well
• Encapsulates a heap object's lifetime in a value type

• Makes the single ownership clear

• Can transfer that ownership clearly

• Automatic transfer and cleanup code

31

auto_ptr – Just one of many

auto_ptr has made a lot of decisions:
• Single owner

• Can transfer ownership

• When disposal occurs

• How to dispose

Alternatives:
• auto_array, scoped_ptr, shared_ptr
• Write own RAII wrappers by hand
Can add extra functions, eg COM wrappers
• RAII generators
My Handle generator, MC++D smart pointer framework
• GC....sort of – recycles memory, doesn’t dispose of objects

32

Error codes

Can too easily forget/ignore
• Wrap in type that will assert or throw
template < typename E > struct Error {
Error() : error(), isRead (true){}
Error(E error) : error(error), read(false){}
Error(const Error& e) : error(e.error), read(e.read) { e.read = true; }
~Error() { if (!read) throw ErrorIgnored(error); }
operator E() const { read = true; return error;}
void operator=(const Error& e) {
if (this != &e) { // needed
error=e.error; read =e.isRead; e.read=true;

}
}
operator void() const {read = true; }

private:
E error; mutable bool read;

};

33

Reliable initialisation

Separate init functions ask for trouble
• Mistake to forget to call

• Mistake to call too many times

• Extra line to prepare

• Can’t use as temporary

Obvious solution is often recommended:

• Init function is the constructor

34

Enforce relationships

Relationships between instances are common
Parent/child

Owner/owned

Ways of enforcing relative lifetimes

• Parent creates and returns child
Child needs to be copyable/transferable

Child could out-live parent…

• Child constructor takes reference to parent
Construction cascades

35

A look back

What have all these examples been showing?

Making new types to represent concepts present in
the problem or solution domain gives some
benefits:

• Clarity of expression

• Better automatic checking

• Housekeeping code generation

• Closer match of the semantic and the syntactic vocabulary

36

When to apply…

• Big up front design – problem domain

• Agile discovery – solution domain

• If you need something to happen, stop and think
– can you ensure it?

• Does the type describe its meaning?

• Does code using something look obvious?

Not a silver bullet – it must make things clearer

37

Different views

Writing libraries tends to make us concentrate on
the implementation inside an interface

Using it sees the interface from outside - a very
different view

Remember usability when designing interfaces

38

Consequences

Some interesting things happen when these ideas
get used a lot

• Dull housekeeping code disappears
Temporary variables are often enough; no visible clear-up
Better exception safety tends to emerge

• Types describe meaning, not representation
Very few built-in types, usually internals. What, not How

• Important relationships become more visible
No longer gets lost in the clutter of how to do it

• Steps towards an aim become clearer

39

Consequences

The code takes on its own style and idioms, unique
to that particular domain and application

In effect you have just written a domain-specific
language dialect that is used to write your
application.

New starters have to learn this language, but it's
closer to the application concepts

40

Key point

Aim to encapsulate types, relationships and
behaviour so that the desired semantics are

expressed by the resulting syntax

Program Semantically

41

Questions?

