
Copyright © 2006 Symbian Software Ltd. Page: 1

John Pagonis
Senior Software Engineer / Senior Developer Consultant

Developer Consulting
Symbian Software Ltd

Architecture, paradigms, idioms and weirdness
of the C++ in your pocket!

Copyright © 2006 Symbian Software Ltd. Page: 2

Welcome :-)
• This talk is about the Symbian OS C++ framework

• For people interested in knowing the “Whys”
… behind some Symbian OS idioms

… behind Symbian OS C++ dialect

… mobile development

• For people that like to “hack” below the surface

• For people familiar with (Symbian) OS, frameworks,
language and architecture.

• Why things are the way they are…..

• …and remember “Interrupts, help unblocking’’

Copyright © 2006 Symbian Software Ltd. Page: 3

Why this talk
• Because Symbian OS and Symbian OS C++ are

different

• Because it is interesting

• Because people may be tempted not to spend time to
appreciate it :-/

• Because of it’s mass adoption and deployment we
run a risk of badly educated engineering…

• Software archaeology teaches us a lot

• “Never criticise what you don’t understand”

Copyright © 2006 Symbian Software Ltd. Page: 4

Today’s menu
• Some context

• Intro to the OS

• About language selection

• Symbian OS C++ idioms (a.k.a. weirdness for a reason ;-)

Copyright © 2006 Symbian Software Ltd. Page: 5

To bootstrap …
• By Q406 there were 110 million Symbian OS phones!

• Q406: 14.6 million shipped

• There have been 157 different models on the market

• By Sony Ericsson, Nokia, Motorola, Samsung, Sharp,
LG, Fujitsu, BenQ, Siemens...

• All phones use one of 3 different GUI platforms

• The cost of making a first of a generation mobile can
easily reach 40 million USD and take more than 2
years for an experienced manufacturer.

• 2 Symbian OS smartphones shipping every second!

Copyright © 2006 Symbian Software Ltd. Page: 6

About architecture…
• Every architectural feat exists within some context,

where it evolves under (competing many times)
forces.

• That context and such forces present the architect
with constraints and affordances.

• For us, ‘’small mobile personal computers’’ has
always been that context.

• We’ve been operating in this context for the past 20+
years or so !

Copyright © 2006 Symbian Software Ltd. Page: 7

Some historical background
• Early 80s: Spectrum ZX/81 Flight Simulator and other

games done by Psion

• 80s : 8bit Organiser circa ‘84 (I, II, P350, CM, LZ64
etc) and the Sinclair QL app suite – early frameworks

• Late 80s : SIBO/Epoc16 circa ’88 – WIMP(MC),
HWIM(s3), XWIM(s3a) - emerging frameworks

• 90s : Epoc32 – EKA1, HCIL, Eikon – frameworks

• Late 90s – today: Symbian OS – EKA1/EKA2, Uikon,
UIQ, S60, MOAP(FOMA) UI etc

Copyright © 2006 Symbian Software Ltd. Page: 8

Evolution…
• Games (efficiency and

hardware insight)

• Vertically integrated products
(hardware and software), OS
and app development

• Product diversification,
Frameworks, OS creation
and evolution (many of)

• Software reuse and
platformisation

• Z80 assembler

• x86 assembler, Forth, OPL,
C, systems thinking, UI, first
object-based designs with C,
limited comms, early OOP

• OOP/OOD, C++, Java, OPL,
comms

• J2ME, Python, Ruby, C++,
many GUI frameworks, lots
of comms, open to anything
and anyone really…

Copyright © 2006 Symbian Software Ltd. Page: 9

Some of the books that influenced us..
• “The Psychology of Computer Programming”, G. M. Weinberg, 1971

• “The Mythical Man Month”, F.P. Brooks, 1974

• “Object Oriented Programming: An Evolutionary Approach”, B. C. Cox,
1986

• “Object Oriented Software Construction”, Bertrand Meyer, 1988

• The C++ Programming Language”, Bjarne Stroustrup (gray version),
1991

• “Advanced C++ Programming Styles and Idioms”, J. O Coplien, 1991

• “Effective C++: 50 Simple Ways to Improe your software and Designs”,
Scott Meyers, 1992

• “Taligent’s Guide to Designing Programs”, 1994

• “Design Patterns: elements of reusable object-oriented software”, E.
Gamma et al., 1995

Copyright © 2006 Symbian Software Ltd. Page: 10

Question:
• How many lines of code are there in a Symbian OS

smartphone today?

a) approx. 250 KLOC

b) approx. 500 KLOC

c) approx. 1 MLOC

d) approx. 5 MLOC

e) approx. 10 MLOC

f) approx. 15 MLOC

g) Too scared to find out :-)

Copyright © 2006 Symbian Software Ltd. Page: 11

Some Greek definitions (John style)

• Architecture == discipline/way of building a construct

• Architect == lead constructor (carpenter in ancient Greek)

• ‘deigma’ == {sample, exhibit}

• ‘paradeigma’ == example of …

• Paradigm == a way of doing/showing something approximate

• ‘Idios’ == self

• Idiom(a) == native dialect (way of using, expressing a language
and/or its vocabulary), special characterising qualities, peculiar
habit characterising a person

Note: ‘idios’ and ‘idiot’ are only one character away :-)

Copyright © 2006 Symbian Software Ltd. Page: 12

Language selection… C++
• C++ is a multi-paradigm programming language

• Probably not the best language for loosely coupled
open world systems

• But we pretty much knew what the apps would need
and frameworks should be like

• It supports OOP

• Good for low level OS construction, strongly typed
and works nicely with assembler

• Has too many features and demands proper
attention, only got standardised recently…

Copyright © 2006 Symbian Software Ltd. Page: 13

How did we select C++?
• Well, Psion Software in the late 80’s was using an Objective-C

look-alike called POOC

• Bjarne Stroustrup was giving a lecture at Imperial College in
London at the time

• David Wood was attending

• Graduates were getting hired in th early nineties to work on a
new ‘’background project’’

• Graduates didn’t want to learn a proprietary language

• Objective-C was going nowhere at the time

• C++ was getting more traction (compilers etc)

• …the rest is history as they say

Copyright © 2006 Symbian Software Ltd. Page: 14

Symbian OS C++
We refer to Symbian OS C++ as the C++ domain
specific dialect and accompanying frameworks that
we use to build Symbian OS and the software that
runs on it.

• This dialect as well as the OS itself have emerged
from the vast experience dealing with small mobile
computers.

• This experience has been captured in the domain
specific idioms and paradigms of Symbian OS.

• Some of the idioms and paradigms present in
Symbian OS are reflected in Symbian OS C++ and
vice versa.

Copyright © 2006 Symbian Software Ltd. Page: 15

Wot no Standard C++ ???
Domain forces, late standardisation, compiler
conformance and compiler performance meant that :

• We had to came up with our own exceptions handling
mechanisms

• Came up with our own collections, container and
buffer/string handling frameworks

• Concurrency support was not in the package

…and we have been criticised ever since, for
architecting something different that works well and is
domain specific :-(

Copyright © 2006 Symbian Software Ltd. Page: 16

Symbian’s context: “Small mobile personal computers”

• User Interaction and Responsiveness

• Battery Powered

• ‘’Always-on’’ , always pocket-able

• Reliability

• Resource constrained

• Openness…

Copyright © 2006 Symbian Software Ltd. Page: 17

Some paradigms…
In order to support the user-centric mentality and operate within
the mentioned forces we used architectural paradigms and
invented idioms such as :

• Multithreading and pre-emptive multitasking

• Lightweight micro-kernel OS design

• Client-Server, session based IPC (among other mechanisms)

• Asynchronous services, Active Objects

• Cleanup Stack, Leaves, Traps for exception handling

• Re-usable frameworks for apps, middleware, GUIs

• …and descriptors

Copyright © 2006 Symbian Software Ltd. Page: 18

Micro-kernel design
• Lightweight micro-kernel with client server

architecture

• System servers as well as user servers run in user
space

• Kernel uses a Virtual Memory Model and MMU for
memory protection

• Drivers run kernel side

• Client/server session based IPC for server access

• Servers mediate access to shared resources and
services

Copyright © 2006 Symbian Software Ltd. Page: 19

EKA2 (Epoc32 Kernel Architecture 2)

• Multi-threaded, pre-emptible Real Time Kernel

• In-fact is a Symbian OS personality on top of a nano-kernel –
many personalities can co-exist ;-)

• O(1) scheduler

• System calls are all pre-emptible as well dual stacks

• Deterministic ISR, thread response, latencies etc

• Memory models and local allocator strategies can be plugged-in

• Many more IPC/ITC mechanisms such as local/global message
queues, publish-subscribe, global anonymous queues, shared
and global memory chunks

Copyright © 2006 Symbian Software Ltd. Page: 20

Kernel – Nano-kernel and personalities
• EKA2 splits the kernel in two layers

• A nano-kernel and a Symbian OS kernel

• The Symbian OS kernel is a micro-kernel

• The Symbian OS kernel is a ‘’personality’’ on top of the NK

• There can be many such personalities running simultaneously, thus
many micro-kernels can run pre-emptively on top of the Symbian nano-
kernel !!!!!!
… For example, one for the GSM or UMTS stack and one for Symbian OS

• NK is responsible for the very basic synchronisation, timing, initial
interrupt handling and scheduling services

• It is not depended on the system library and doesn’t know about
processes or memory models (dealing with the MMU or lack of)

• All offered services are deterministic with bounded execution times

Copyright © 2006 Symbian Software Ltd. Page: 21

Kernel pre-emptibility
• The EKA2 Symbian OS Kernel is multi-threaded

… five threads and an executive (collection of system calls)

• It is completely pre-emptible
… All memory allocations and even a context switch can be

pre-empted

• User side threads have a user mode and supervisor
mode stack
… executive calls run on user thread’s supervisor stack

… executive calls can all be pre-empted!!!

… executive calls can be installed per thread, even!!!

Copyright © 2006 Symbian Software Ltd. Page: 22

Four Symbian OS C++ idioms
• Active Objects

• CBase and other type idioms

• Descriptors and run time bounds checking

• Exceptions handling

Copyright © 2006 Symbian Software Ltd. Page: 23

Asynchronous services

Agenda
Server

File
Server

Kernel

Window
Server

DBMS

Application

Kernel mediated Sessions

Copyright © 2006 Symbian Software Ltd. Page: 24

Many asynchronous services….
• But the OOP model is serial and so is vanilla C++

• Concurrency support was needed for asynchronous
event handling and the multitude of client-server
interactions

• A lightweight model that introduces concurrency and
avoids synchronisation issues is that of Active
Objects

• btw: Grady Booch talks about AOs in his 1990 book on ‘’Object Oriented Design
with Applications’’. Defined as objects having their own thread of control.

• We used collaborative AOs within a thread instead
based on the late 80’s and SIBO experience.

Copyright © 2006 Symbian Software Ltd. Page: 25

Active Objects
• Thus every thread got a request semaphore

• Most threads and certainly all apps and servers got
an Active Scheduler

• So that it can schedule…. Active Objects

• Thus Active Objects became a lightweight
mechanism for encapsulation of concurrent
transactions over session based IPC

• Simple: Issue a request, run when the request
completes, if an error occurs handle the error.

• … priorities, run to completion, no pre-emption

Copyright © 2006 Symbian Software Ltd. Page: 26

Active Objects in a thread

AO

Request Semaphore

AO

AO

Copyright © 2006 Symbian Software Ltd. Page: 27

The Active Objects interface
class CActive : public CBase

{

public:

IMPORT_C ~CActive();

IMPORT_C void Cancel();

IMPORT_C void Deque();

IMPORT_C void SetPriority(TInt aPriority);

inline TBool IsActive() const;

inline TBool IsAdded() const;

inline TInt Priority() const;

protected:

IMPORT_C CActive(TInt aPriority);

IMPORT_C void SetActive();

virtual void DoCancel() =0;

virtual void RunL() =0;

IMPORT_C virtual TInt RunError(TInt aError);

public:

TRequestStatus iStatus;

}

Copyright © 2006 Symbian Software Ltd. Page: 28

Active Object transaction encapsulation
• Use or open a session to some service provider

(server)

• Add AO to the Active Scheduler

• Issue a request to that service that may complete
asynchronously

• Set the AO active, thus notify the scheduler

• … handle the completion of the request in the RunL

• If there is an unhandled exception RunError

• ..or let the Active Scheduler know

Copyright © 2006 Symbian Software Ltd. Page: 29

Active Objects almost everywhere

Agenda
Server

File
Server

Kernel

Window
Server

DBMS

Application

Copyright © 2006 Symbian Software Ltd. Page: 30

Good things about Active Objects
• AOs help to manage complexity and synchronisation

issues with concurrency within a thread, without too
much to worry about

• AOs encapsulate transactions and their error
handling

• AOs help us avoid multi-threading for async event
handling where it is not always needed or when it is
more complicated or just an overkill

• AOs let servers manage many clients and many
transactions with just one thread

Copyright © 2006 Symbian Software Ltd. Page: 31

..and the bad

• BUT they are no panacea and should not be
used where they don’t fit the paradigm !!!

• Multi-threading instead of AOs is valid and
must be used where it must !

Copyright © 2006 Symbian Software Ltd. Page: 32

From Bjarne Stroustrup’s FAQ:
Why doesn't C++ have a universal class Object?
We don't need one: generic programming provides statically
type safe alternatives in most cases. Other cases are handled
using multiple inheritance.
There is no useful universal class: a truly universal carries no
semantics of its own.
A "universal" class encourages sloppy thinking about types and
interfaces and leads to excess run-time checking.
Using a universal base class implies cost: Objects must be
heap-allocated to be polymorphic; that implies memory and
access cost. Heap objects don't naturally support copy
semantics. Heap objects don't support simple scoped behaviour
(which complicates resource management). A universal base
class encourages use of dynamic_cast and other run-time
checking

Copyright © 2006 Symbian Software Ltd. Page: 33

CBase
• All Complex objects in Symbian OS must inherit from CBase

• Unless they are proxies to some other Resource

• Or they are simple Types that do not own any heap allocated
objects.

• CBase gives you overloaded new that uses Symbian OS
exceptions and cleanup mechanisms

• Zeroes out all its members

• Has virtual destructors and constructors

• By convention forbids multiple inheritance (we use mixins
instead)

• Needs to be allocated on the heap…

Copyright © 2006 Symbian Software Ltd. Page: 34

CBase
Circa late 80’s, during development of SIBO/Epoc16
using POOC (Psion Object Oriented C). It was
observed that experienced programmers would zero
init their members immediately following construction.

Therefore the allocator for ‘classes’ was handcrafted
to do this and thus make complex object construction
more efficient and safer for the careless
programmers.

Later in ’94, Epoc32 C++ inherited this.

Following this CBase inherited some features to go
with how Symbian OS does exceptions handling and
cleanup…

Copyright © 2006 Symbian Software Ltd. Page: 35

Descriptors not strings!
• Symbian OS C++ makes use of objects that

encapsulate buffers or pointers to buffers as opposed
to naked ‘C’ strings

• Descriptors are everywhere in Symbian OS

• Descriptors do run-time bounds checking

• Descriptors are ROMable

• Descriptors can describe buffers of ASCII, Unicode
and binary data on the heap or on the stack

• They offer a safe and consistent mechanism for
dealing not only with strings but also with binary data

Copyright © 2006 Symbian Software Ltd. Page: 36

Descriptor classes
• All descriptor classes inherit from the base class TDesC

• There are four ‘abstract’ classes: TDesC, TDes, TBufBase and
TBufCBase (TBufCBase and TBufBase are an implementation convenience)

• These are not abstract in the C++ sense as descriptors do not
have pure virtual methods; however they are abstract in the
sense that they are not intended to be instantiated.

• There are six concrete descriptor types: TBuf, TPtr, RBuf,
TPtrC, TBufC and HBufC

• In addition there is a related type known as a ‘literal’.‘Lits’ are
not really descriptors but they are closely related.

Copyright © 2006 Symbian Software Ltd. Page: 37

Descriptors hierarchy

TDesC

TBufCTPtrCRBufTPtrTBuf

TBufBase

HBufC

TBufCBase

TDes

Copyright © 2006 Symbian Software Ltd. Page: 38

Descriptor attributes
Type Constness Name Approximate C

equivalent
Literal Not modifiable TLitC8 static const char[]

Stack Descriptor Modifiable TBuf8 char[]

Stack Descriptor Not directly

modifiable

TBufC8 const char[]

Pointer Descriptor Modifiable TPtr8 char*

(pointing to non-
owned data)

Pointer Descriptor Not

modifiable

TPtrC8 const char*

(pointing to non-
owned data)

Heap

Descriptor

Modifiable RBuf char*

(pointing to owned
data

Heap

Descriptor

Not directly

modifiable

HBufC8 const char*

(pointing to owned
data)

Copyright © 2006 Symbian Software Ltd. Page: 39

Descriptor memory layout (for the curious:-)

Type (0) DataLength

Pointer to data
or pointer to
descriptor

Pointer to data or
pointer to HBufC

Data

Type (0) DataLength

Type Length

Type (0) DataLength

Type (1) Pointer to
dataLength

Type (3) Max lengthLength

Type (2 or 4) Max lengthLength

Type (2 or 4) Max lengthLength

TLitC

TDesC

TBufC

TPtr
C

TBuf

TPtr

RBuf

HBufC

Type Max lengthLengthTDes

Copyright © 2006 Symbian Software Ltd. Page: 40

Basic usage (and please note the naming convention)

// Create a literal descriptor

_LIT(KTxtHelloWorld, "Hello World!"); //TLitC

const TInt KHelloWorldLength = 12;

// create a TBuf

TBuf<KHelloWorldLength> tbuf(KTxtHelloWorld);

// create a TBufC

TBufC<KHelloWorldLength> tbufc(KTxtHelloWorld);

// create a HBufC

HBufC* hbufc = KTxtHelloWorld().AllocLC();

// Create an RBuf

RBuf rbuf;

rbuf.CreateL(KHelloWorldLength, KTxtHelloWorld);

rbuf.CleanupClosePushL();

// create a TPtrC

TPtrC tptrc(tbufc);

// create a TPtr

TPtr tptr = *hbufc;

Copyright © 2006 Symbian Software Ltd. Page: 41

About bounds checking
• You can’t get buffer overflows with descriptor APIs!!

• Append, At, [], Format and Copy will panic your
thread before you overwrite any data!

• Makes you fix it really quickly as opposed silently
tripping over :-)

• ASCII to Unicode conversion comes for free with
Copy()

…and much much more

Copyright © 2006 Symbian Software Ltd. Page: 42

Symbian OS C++ exceptions handling
Native Symbian OS C++ programs use an exceptions
handling mechanism which is not compatible with the
ISO C++ 0x exceptions handling way (actually the design of

Symbian OS predates ISO/IEC 14882 1998/2003).

In Symbian OS, programmers have to think and
implement their trapping, throwing and heap
allocated object tracking in the face of exceptions,
manually - as part of their design and not as an
afterthought. (Test Error Driven Development :-)

Symbian OS C++ exceptions handling philosophy, is
to be ‘’in your face’’, but not ‘’in the way’’.

Copyright © 2006 Symbian Software Ltd. Page: 43

Prehistory of Epoc exceptions
• Psion software was using exceptions circa ’89 with

POOC

• Exceptions back then as with Symbian OS today are
closer to how Objective-C works rather than how
modern C++ works

• Complex Symbian OS C++ objects have to be on the
heap and be manually tracked

• …this is because the cleanup mechanism doesn’t
cater for stack allocated objects

Copyright © 2006 Symbian Software Ltd. Page: 44

About exceptions handling…
void SomeMethodL()

{

tmpObject = new (ELeave) CHeapyObject()

CleanupStack::PushL(tmpObject)

DoSomethingThatMayLeaveL()

CleanupStack::Pop(tmpObject);

// …and pass ownership of that object

//OR possibly

CleanupStack::PopAndDestroy(tmpObject)

}

Copyright © 2006 Symbian Software Ltd. Page: 45

Trapping and Leaving
Cleanupstack::PushL(something);/* something will

be tracked by the CleanupStack until poped */

TRAPD(err,SomeMethodL());

if (KErrNone!=err)

{

//start handling the exception

//and possibly propagate it by another Leave

}

…possibly pop something

Copyright © 2006 Symbian Software Ltd. Page: 46

How does the CleanupStack work ?
• It stores pointers to objects to be destroyed in case of

an exception (a.k.a. Leave)

• These pointers are stored in nested levels

• Such levels are marked by the TRAP macro (think
almost of ‘C’ setjump/longjump here with exec call)

• When a Leave occurs, it makes sure it calls all d’tors
(and cleanup items) of objects belonging to the
corresponding Trap level.

• And the stack unwinds to the point of TRAP,
returning an exception error code.

Copyright © 2006 Symbian Software Ltd. Page: 47

And why is that ?
• Poor or no support for C++ exception handling in

compilers at the time

• CleanupStack is in your face a good thing

• Compilers behind the scenes write all the exception
handling code for you, they tend to be really
conservative and churn much more code than a
developer would …(challenge me on this, go on!:-)

• ….this may change with newer compilers…

Copyright © 2006 Symbian Software Ltd. Page: 48

(Almost) Introducing Modern ISO Standard C++…
(yielding to peer pressure that is)

• TRAP and User::Leave() are now implemented
internally in terms of catch and throw

• Ported 3rd party code can use standard C++
exception mechanisms

try/catch/throw
… But not mix these with Symbian OS system APIs

… “Leaving functions must not throw, unless they also catch
internally” “barriers’’

• Standard C++ exception specifications are supported

Copyright © 2006 Symbian Software Ltd. Page: 49

..more
• The C++ spec ISO/IEC 14882:1998/2003 is enabled

but not delivered.

• RTTI and dynamic_cast<> is enabled, but not for
Symbian OS APIs.

• RTTI - dynamic_cast<> implies the use of catch() to
handle the exception that is thrown when the cast
fails, and this doesn't mesh well with the limited use
of C++ exceptions for TRAP and Leave().

• Current coding standards are to use
NONSHARABLE_CLASS for internal component
classes, which disables the RTTI info being emitted.

Copyright © 2006 Symbian Software Ltd. Page: 50

…therefore remember
• Symbian OS is now compiled with exceptions turned on, i.e.

exception tables and the like are included in the (x86 and EABI)
binaries

• implemented User::Leave/TRAP in terms of exceptions
• It is possible to throw and catch exceptions within your own

code.
• It is possible to catch leaves and exceptions in your own

code….Don’t
• You cannot, in general, TRAP an exception
• Code that leaves and code that throws should not intermingle
• nor should code that leaves have objects on the stack with non-

trivial destructors
• nor should code that throws, use the cleanup stack OR depend

on code that indirectly depends on objects on it.
• Code that leaves MAY NOT call code that throws, without some

suitable barrier -> will not call the cleanup sequence

Copyright © 2006 Symbian Software Ltd. Page: 51

On Barriers
• Q: Why do we need a 'suitable' barrier?

• A: To protect the integrity of the cleanup stack.
#ifdef __LEAVE_EQUALS_THROW__

EXPORT_C void User::Leave(TInt aReason)

{

TTrapHandler* pH = Exec::TrapHandler();

if (pH)

pH->Leave(aReason);// causes things on the cleanup stack to be
cleaned up

throw XLeaveException(aReason);

}

#endif

Copyright © 2006 Symbian Software Ltd. Page: 52

A C++ teaser…. be prepared !
• Can you spot any problems ?
void SymbianFunc1L()

{

Cx* obj1 = Cx::NewLC();

NonSymbianFuncL(obj1);

CleanupStack::PopAndDestroy(obj1);

}

void NonSymbianFuncL(Cx* aCx)

{

Sx obj2(aCx); // automatic object with destructor

SymbianFunc2L(obj2.DoSomething());

obj2.DoSomethingElse();

// obj2 destroyed here

}

void SymbianFunc2L(aParam)

{User::Leave(leavecode);}

Copyright © 2006 Symbian Software Ltd. Page: 53

A small contribution to the C++ community

• Because of the efforts at Symbian to allow
developers to ‘intermix’ C++ binaries, on Symbian OS
v9.x, created with different compilers, ARM and
Symbian standardised the new C++ EABI for all ARM
processors.

• These efforts have been contributed to GCC-E which
is now compatible with ARM’s RVCT.

Yes, Symbian OS was the guinea pig to verify this
experiment, while we were building Symbian OS
v9.0!

Copyright © 2006 Symbian Software Ltd. Page: 54

Thank you !

Q & A
For more:

“Symbian OS Explained”, Jo Stichbury

“Symbian OS for Mobile Phones vol2” , Richard Harrison

“Symbian OS Internals: Real Time Kernel Programming”, Jane
Sales et al

“The Symbian OS Architecture Sourcebook: Design and
Evolution of a mobile Phone OS”, Ben Morris

“Symbian for Software Leaders: Principles of Successful
Smartphone Development Projects2”, David Wood

	Welcome :-)
	Why this talk
	Today’s menu
	To bootstrap …
	About architecture…
	Some historical background
	Evolution…
	Some of the books that influenced us..
	Question:
	Some Greek definitions (John style)
	Language selection… C++
	How did we select C++?
	Symbian OS C++
	Wot no Standard C++ ???
	Symbian’s context: “Small mobile personal computers”
	Some paradigms…
	Micro-kernel design
	EKA2 (Epoc32 Kernel Architecture 2)
	Kernel – Nano-kernel and personalities
	Kernel pre-emptibility
	Four Symbian OS C++ idioms
	Asynchronous services
	Many asynchronous services….
	Active Objects
	Active Objects				in a thread
	The Active Objects interface
	Active Object transaction encapsulation
	Active Objects almost everywhere
	Good things about Active Objects
	..and the bad
	From Bjarne Stroustrup’s FAQ:
	CBase
	CBase
	Descriptors not strings!
	Descriptor classes
	Descriptors hierarchy
	Descriptor attributes
	Descriptor memory layout (for the curious:-)
	Basic usage (and please note the naming convention)
	About bounds checking
	Symbian OS C++ exceptions handling
	Prehistory of Epoc exceptions
	About exceptions handling…
	Trapping and Leaving
	How does the CleanupStack work ?
	And why is that ?
	(Almost) Introducing Modern ISO Standard C++… (yielding to peer pressure that is)
	..more
	…therefore remember
	On Barriers
	A C++ teaser…. be prepared !
	A small contribution to the C++ community
	Thank you !

